
MISSION OPERATIONS AND DATA SYSTEMS DIRECTORATE

Landsat 7 Processing System (LPS)

Program Reference Manual

DRAFT

July 1997

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

Landsat 7 Processing System (LPS)
Program Reference Manual

DRAFT

July 1997

Prepared by:

Jeff Hosler, Software Engineering Manager Date
Landsat 7 Processing System, Code 514

Dan Ferry, Software Task Leader Date
Landsat 7 Processing System, CNMOS, Computer Sciences Corp.

Concurred by:

Nate Daniel, Element Manager Date
Landsat 7 Processing System, CNMOS, Computer Sciences Corp.

Approved by:

Joy Henegar, Project Manager Date
Landsat 7 Processing System, Code 514

Goddard Space Flight Center
Greenbelt, Maryland

DRAFT

LPS PRM iii

Abstract

This document provides information necessary for Earth Resources Observation System (EROS)
Data Center (EDC) programmers to maintain and enhance the Landsat 7 Processing System
(LPS).

Keywords: Landsat 7, Landsat 7 Processing System (LPS), maintenance

DRAFT

LPS PRM iv

DRAFT

LPS PRM v

Preface

This document is under the control of the Landsat 7 Processing System (LPS) Central Review
Board (CRB).

Configuration change requests (CCRs) to this document, as well as supportive material justifying
the proposed changes, should be submitted to the LPS CRB. Changes to this document shall be
made by document change notice (DCN) or by complete revision.

Address questions and proposed changes concerning this document to

Jeffrey C. Hosler, Software Manager
Landsat 7 Processing System
Code 514
Goddard Space Flight Center
Greenbelt, Maryland 20771

DRAFT

LPS PRM vii

Contents

Section 1. Introduction

1.1 Purpose and Scope1–1

1.2 Applicable Documents...1–1

Section 2. COTS Software

2.1 ORACLE..2–1

2.2 HPDI Device Driver...2–1

2.3 Hierarchical Data Format Library..2–1

Section 3. GOTS Software

3.1 Waveletting...3–1

3.2 Frame Synchronization..3–1

3.3 HDF-Earth Observation System Library..3–3

3.4 Reusable Software Library3–3

Section 4. LPS Global Units

4.1 Finding Routines that Made Calls to a Given Routine...4–1

4.2 LPS Global Units..4–1

4.2.1 LPS Shared-Memory Resource Management4–1

4.2.2 LPS FIFO Queue4–2

4.2.3 LPS File-Related Operation..4–2

4.2.4 LPS Process Status, Initialization, and Handling.....................................4–2

4.2.5 LPS Message Logging...4–2

4.2.6 LPS Time Manipulation..4–3

4.2.7 LPS Database Access...4–3

4.3 MACS Global Units...4–4

4.4 RDCS Global Units .. .4–4

4.5 RDPS Global Units..4–12

4.5.1 Frame Synchronization...4–12

4.5.2 Cyclic Redundancy Check...4–12

4.5.3 Reed-Solomon Decoder..4–12

4.5.4 Reed-Solomon Code Block..4–12

DRAFT

LPS PRM viii

4.5.6 BCH Decoder .. .4–12

4.6 MFPS Global Units .. .4–13

4.7 PCDS Global Units..4–13

4.8 IDPS Global Units...4–13

4.9 LDTS.... .4–14

4.9.1 Global Units...4–14

4.9.2 Reuse Code..4–15

Section 5. Portability Issues

5.1 long long..5–1

5.2 HPDI Device Driver...5–1

5.3 System Software Calls..5–1

5.3.1 LPS.... .5–1

5.3.2 MACS..... .5–1

5.3.3 RDCS5–2

5.3.4 RDPS..... .5–2

5.3.5 MFPS5–2

5.3.6 PCDS..... .5–2

5.3.7 IDPS..... .5–2

5.3.8 LDTS..... .5–3

5.4 Other Portability Issues5–3

Section 6. Development Environment

6.1 Directory Structure...6–1

6.1.1 LPS-Developed Software..6–2

6.1.2 Location of COTS/GOTS Software6–5

6.2 Environment Files .. .6–6

6.2.1 .lpsrc6–6

6.2.2 .lpsdevrc...6–7

6.2.3 Possible Upgrade Problems...6–8

6.3 Compiler Considerations..6–8

DRAFT

LPS PRM ix

6.3.1 Configuration Flags6–8

6.3.2 Expected Warning Messages..6–8

6.4 Imakefiles...6–12

6.4.1 General Considerations6–16

6.4.2 ORACLE...6–29

6.4.3 Possible Upgrade Problems...6–30

Section 7. Testing LPS Software

7.1 Simulators .. .7–1

7.1.1 ECS Simulator .. .7–1

7.1.2 Major Frame Processing and Image Data Processing Simulator for Testing
Payload Correction Data7–1

7.2 Viewing Shared Memory7–5

7.2.1 RDPS-to-MFPS...7–5

7.2.2 MFPS-to-PCDS...7–5

7.2.3 MFPS-to-IDPS..7–5

7.3 COTS and GOTS..7–5

7.3.1 ORACLE...7–5

7.3.2 EOSView7–8

7.3.3 vshow.... .7–8

7.3.4 LinkWinds...7–8

7.3.5 gtedit..7–8

Section 8. Design Decisions

8.1 General...... .8–1

8.1.1 Interface Consideration...8–1

8.1.2 Rollback with L0R Failure...8–4

8.1.3 Error-Handling Philosophy..8–4

8.1.4 Database Access Routines8–4

8.2 Management and Control Subsystem..8–4

8.3 Raw Data Capture Subsystem..8–5

DRAFT

LPS PRM 1–1

Section 1. Introduction

1.1 Purpose and Scope
This document provides information necessary for Earth Resources Observation System (EROS)
Data Center (EDC) programmers to maintain and enhance the Landsat 7 Processing System
(LPS). This document is not intended to be a design document, users guide, or configuration
guide. Instead, it contains additional information that was not appropriate for the other
documents, but that the LPS development team considered useful for maintenance programmers.

This document covers the following topics with respect to maintaining LPS software:

• Commercial off-the-shelf (COTS) software

• Government off-the-shelf (GOTS) software

• Reuse software

• Portability issues

• Development environment

• Testing LPS software outside of the full environment

• Design decisions made during development

• Other “gotchas”

1.2 Applicable Documents
LPS maintenance programmers should be familiar with the following documents before reading
this document:

1. National Aeronautics and Space Administration (NASA) Goddard Spaceflight Center
(GSFC), Mission Operations and Data System Directorate (MO&DSD), 560-
8SWR/0195, Landsat 7 Processing System (LPS) Software Requirements Specification
(SRS), Revision 2, June 1997

2. —, Landsat 7 Processing System (LPS) As-Built Specification (ABS), July 1997

3. —, Landsat 7 Processing System (LPS) Interface Definitions Document (IDD), July
1997

4. —, 560-3SUG/0195R2.0, Landsat 7 Processing System (LPS) Users Guide, Release 2,
Volumes 1 and 2, July 1997

DRAFT

LPS PRM 2–1

Section 2. COTS Software

Three COTS software components are used by LPS: ORACLE, the high-speed peripheral device
interface (HPDI) data capture board driver, and the hierarchical data format (HDF) library.
ORACLE products were not modified in any way for use with LPS. However, the HPDI data
capture board driver software was written by Silicon Graphics, Inc. (SGI) engineers specifically
to support LPS.

2.1 ORACLE
Important items to consider when maintaining LPS ORACLE routines are the following:

• User interface routines were generated with Developer 2000 Forms 4.5. The .fmb files
are converted by f45genm to .fmx files.

• Three reports are generated using Developer 2000 Reports 2.5 (the specific units are
mac_ui_data_trans_sum_rpt, mac_ui_lps_qa_rpt, and mac_ui_data_rec_sum_rpt). The
.rdf files are converted by r25convm to .rep files.

• Global and subsystem-specific database access routines (DBARs) hide the details of
accessing the database. These routines have names such as
subsystem_db_GetSomeData.pc and are processed by the precompiler into .c routines.
(This is handled by Imakefiles.) Include files (e.g., subsystem_db_GetSomeData.h) are
also sometimes used.

2.2 HPDI Device Driver
The HPDI device driver software was designed and developed by SGI. This software is not
included with the LPS delivered source, but is treated as COTS software, and is required to
perform raw wideband data capture and transmission. If changes to this software are required,
contact SGI Technical Support.

2.3 Hierarchical Data Format Library
HDF is a product of the National Center for Supercomputing Applications (NCSA) at the
University of Illinois. It is a platform-independent file format designed to contain scientific data.
Data objects of differing types (e.g., multidimensional arrays, tables, images, text) can be stored
as distinct or related entities in the same file. HDF files are created and read using an automatic
programmatic interface (API) implemented by a library of C functions available free of charge
from NCSA. HDF is available for most UNIX platforms, as well as Windows NT and the Apple
Macintosh. HDF files created on one platform can be transported to any of the other supported
platforms, and a number of third-party tools are available that can read HDF files. The LPS
browse and mirror scan correction data (MSCD) files are HDF files. NCSA’s Web site at
http://hdf.ncsa.uiuc.edu/ provides details about HDF and compatible tools.

DRAFT

LPS PRM 3–1

Section 3. GOTS Software

Three software components are provided by NASA/GSFC. If any changes to the software are
needed, contact GSFC for their support.

3.1 Waveletting
GSFC provided the C function, wavelet_alg.c, to the LPS project to perform wavelet reduction
on browse images. LPS developers had to make some minor modifications to this function so
that it could be integrated into LPS, but they did not change the logic of the algorithm. The
wavelet_alg.c function receives a pixel array as input, performs wavelet reduction on it, and
outputs a smaller array containing a reduced representation of the input image. The degree of
reduction is determined by the number of wavelet iterations performed. This function is used by
the idp_browse component of the image data processing subsystem (IDPS).

3.2 Frame Synchronization
LPS uses GSFC’s Renaissance Consultative Committee for Space Data Systems (CCSDS) frame
synchronization software building block as part of the

• Raw data processing program to locate CCSDS frames within a contact’s file of raw
wideband data

• Payload correction data (PCD) program to locate the start of PCD minor frames within
sequences of packed PCD words

The CCSDS frame synchronization software locates fixed-length frames within sequences of
octets stored in memory. The software uses a parameterized search, check, lock, and flywheel
(SCLF) synchronization strategy that follows the state transition diagram (Figure 3–1).

Frame synchronization using an SCLF strategy is always in one of four modes:

1. SEARCH – The software begins in this mode and searches bitwise for the frame
synchronization pattern in the input buffer. Once the pattern is discovered, the software
moves to CHECK.

2. CHECK – The software verifies that it has found the pattern by checking that the
pattern continues to occur at the expected location a parameterized number of times. If
the pattern recurs the requisite number of times, the software moves to LOCK.
Otherwise, it returns to SEARCH.

3. LOCK – The software outputs frames as long as it continues to find the pattern at the
expected location. After each discovery of the pattern, the software advances the length
of the frame and looks for the synchronization pattern. If the pattern is not encountered,
the software may either enter FLYWHEEL or return immediately to SEARCH.

4. FLYWHEEL – The software flywheels, i.e., ignores a parameterized number of
missing patterns. If the pattern is discovered again before the specified number of
missing patterns is exceeded, the software returns to LOCK. Otherwise, it returns to
SEARCH. Note that, if the FLYWHEEL parameter is 0, the software goes immediately
from LOCK to SEARCH when the pattern is missing.

DRAFT

LPS PRM 3–2

Search

Compare buffer with pattern
starting at first bit

Start

Move to next bit

Pattern not found

Save frame and move to expected
start of next frame

Pattern found

Check
Save frame and move to expected
start of next frame

Pattern found and number of
checked frames < check parameter

Move to next bit
and resume search

Pattern not found

Output saved frames and this frame;
move to expected start of next frame

Pattern found and number of
checked frames = check parameter

Lock Output frame and move to
expected start of next frame

Pattern found

Output frame and
move to expected
start of next frame

Pattern found

Discard frame

Pattern not found
and flywheel
parameter = 0

Flywheel

Move to next bit and resume search

Pattern not found and number of flywheeled
frames = flywheel parameter

Move to expected start
of next frame

Pattern not found and number of
flywheeled frames < flywheel
parameter

Output frame and move to
expected start of next frame

Pattern not found
and flywheel parameter > 0

10037638W-001

Figure 3–1. State Transition Diagram for Frame Synchronization Using an SCLF
Strategy

A set of parameters provided by the caller controls details of the synchronization strategy. In
addition to the flywheel parameter, there are parameters for the number of frames to check, the
number of bit errors in the synchronization pattern to ignore, a number of bit positions by which
the pattern can be offset and still count as successfully located, and others.

To invoke the frame synchronization software, the using program first calls fs_initialize(),
passing a structure containing the parameter values to be used and the address of a callback
function. The using program loops through its input data, coping a convenient portion to an input
buffer in memory and calling fs_frame_sync() with a pointer to the buffer. fs_frame_sync()
locates frames and invokes the callback function for each frame that it locates, passing a pointer
to the frame along with other information. fs_frame_sync does not return until the entire buffer
has been processed. When all input has been processed, the using program calls fs_terminate to
free resources allocated during synchronization and to generate quality and accounting (Q&A)

DRAFT

LPS PRM 3–3

statistics for the entire processing run. The using program retrieves the statistics by calling
fs_get_stats().

3.3 HDF Earth Observation System Library
The HDF Earth Observation System (EOS) library is a set of functions, developed by the EOS
Core System (ECS) project, that implements the HDF-EOS API. These library functions can be
called from C/C++ programs and are built on the base HDF library from NCSA. HDF-EOS uses
base HDF functions to build higher level EOS-specific structures, such as swaths and
geolocation data.

An HDF-EOS swath is a structure consisting of a track dimension and a cross-track dimension.
The track represents the path of a spacecraft as projected on the Earth’s surface. In the case of
LPS, the cross-track represents the path of the mirror on the spacecraft as it sweeps back and
forth perpendicular to the track. The result is a swath consisting of a two-dimensional array of
sensor data.

Geolocation data is HDF-EOS structures that contain information about the swath and are
internally mapped to it. Data, such as scan times and latitude and longitude coordinates, is stored
as geolocation data and mapped to scan data in the swath. Through the HDF-EOS API, an
application can extract sections of scan data from the swath based on geolocation data. HDF-
EOS files are HDF files also; however, most off-the-shelf HDF-compatible tools cannot interpret
the complex EOS swath and geolocation structures.

It is important to note that HDF and HDF-EOS files are not completely compatible. The LPS
band and calibration files are written as swaths and geolocation data using the HDF-EOS API.

3.4 Reusable Software Library
The Reusable Software Library (RSL) is a collection of general-purpose mathematical functions
in C programming language. The PCD processing subsystem (PCDS) uses the following
functions from the RSL:

• minv3c – invert a 3 x 3 matrix

• mprodgc – compute the cross product of two matrixes

• qtoac – compute a 3 x 3 rotation matrix from a quaternion

A full description of the API for each function is included in the source file’s prolog.

DRAFT

LPS PRM 4–1

Section 4. LPS Global Units

4.1 Finding Routines that Made Calls to a Given Routine
LPS has a script named “Whocalls” that can be used to determine which routines made calls to a
routine(s) within the scope of LPS project. This script searches through all the directories whose
names began with “src” and under the $LPS_HOME directory and reports those routines that
made calls to that routine(s).

4.2 LPS Global Units
LPS global routines belong to the following categories:

1. LPS shared-memory resource management

2. LPS first-in-first-out (FIFO) queue

3. LPS file-related operation

4. LPS process status, initialization, and handling

5. LPS message logging

6. LPS time manipulation

7. LPS database access

4.2.1 LPS Shared-Memory Resource Management

• lps_ShmAddListTail – adds a block into the tail of a shared-memory block list

• lps_RsrcAlloc – creates the interprocess communication (IPC) resources used by LPS

• lps_RsrcAllocFIFO – creates the FIFO queues used by LPS

• lps_RsrcAllocShm – creates the shared-memory segments used by LPS

• lps_ShmClose – allows the caller to detach from an LPS shared-memory resource

• lps_ShmCreate – creates the shared-memory resources used by LPS

• lps_ShmCreateSemaphore – creates an LPS semaphore set

• lps_RsrcDealloc – deallocates LPS IPC resources

• lps_ShmGetRdBlk – provides the caller with a shared-memory read block

• lps_ShmGetWrBlk – provides the caller with a shared-memory write block

• lps_ShmOpen – attaches the caller to an LPS shared-memory resource

• lps_ShmOpenSemaphore – attaches the caller to an LPS semaphore set

• lps_ShmPutRdBlk – returns a read block to the free shared-memory block pool

DRAFT

LPS PRM 4–2

• lps_ShmPutWrBlk – places a written block to the shared-memory active block pool

• lps_ShmRemListHead – removes a block from the head of the active shared-memory
block list

• lps_ShmRemListTail – removes a block from the tail of the free shared-memory block
list.

• lps_ShmRemove – removes an LPS shared-memory resource from the system

4.2.2 LPS FIFO Queue

• lps_FIFOClose – detaches the caller from the requested LPS FIFO queue channel

• lps_FIFOOpen – attaches the caller to the requested IPC FIFO channel

• lps_FIFOSend – sends data into the LPS IPC FIFO channel

• lps_FIFOReceive – retrieves data from LPS IPC FIFO channel

4.2.3 LPS File-Related Operation

• lps_GetPIDFileName – obtains the temporary process identifier (PID) filename used
to signify raw data capture subsystem (RDCS) activity

• lps_FileNameCreate – creates an LPS L0R output filename with a full path based on
the file type and subinterval identifier

• lps_ParseFileName – retrieves the file pathname, filename, and file type

• lps_ValidateRDCOutfileName – parses and validates the raw data capture filename
from command line input argument

4.2.4 LPS Process Status, Initialization, and Handling

• lps_CaptureIsRunning – checks to see if raw data capture process is running

• lps_GetOpt – extracts the option letter from argument vector argv

• lps_ParseOptions – parses and validates the arguments for LPS processes according to
the LPS Interface Definition Document (IDD), Section 2.1

• lps_ProcessChildStatus – converts the child’s system status to an LPS-specific child
exit status

• lps_ProcessInit – initializes the processing environment for LPS processes

• lps_ProcessStartChild – forks a child process, executes the requested file or script, and
passes to the child a specified argv vector list

DRAFT

LPS PRM 4–3

4.2.5 LPS Message Logging

• lps_LogMessage – logs lps error or status messages into lps_Jounal using a UNIX
syslog facility

4.2.6 LPS Time Manipulation

• lps_CalDate – computes the calendar date corresponding to a given Julian day

• lps_ComputeEpoch – converts time from structure to time in seconds from Epoch

• lps_DayOfYear – computes the day of year from a given month, day, and year

• lps_EpochBreakdown – converts time in seconds from Epoch to LPS time structure

• lps_JulDate – computes the Julian day corresponding to a given calendar date

• lps_MonthDay – computes month and day of month from a given day of year and year

• lps_TimeAdd – adds a time duration to a time value

• lps_TimeAssignValue2Struct. – assigns values to an LPS time structure

• lps_TimeCompare – compares two time values and passes back an integer greater
than, equal to, or less than 0 based on first time value greater than, equal to, or less than
second time value

• lps_TimeCompareTol – compares the difference between two time values against a
given tolerance

• lps_TimeDiff – compares two time values and returns the difference and comparison
status

• lps_TimeDivide – calculates the total number of time units for a time duration

• lps_TimeDurCheck – checks the validity of members of an LPS time-duration
structure

• lps_TimeGetCurrentTime – returns system time in yyyy-mm-dd-hh-mm-ss format

• lps_TimeMultiply – calculates a time duration given total number of time units and
base time unit structure

• lps_TimeScanSeconds – converts a scan time from time structure format to a time in
seconds since 1/1/1993

• lps_TimeString2Struct – converts a time string into a time structure

• lps_TimeStringCheck – checks the validity of an LPS time string

• lps_TimeStruct2String – converts a time in LPS structure into a time string in the
format of LPS time structure

DRAFT

LPS PRM 4–4

• lps_TimeStructCheck – checks validity of members of an LPS time structure

• lps_TimeSubtract – subtracts a time in LPS time structure from a duration in LPS
duration structure and returns a result in LPS time structure

4.2.7 LPS Database Access

• lps_db_Commit – commits the database transactions and reports the commit status

• lps_db_Connect – connects a process to the database server

• lps_db_Disconnect – disconnects a process from the database server

• lps_db_ErrorMessage – logs an ORACLE error message

• lps_db_GetLPSConfiguration – retrieves the LPS configuration table from the
database server

• lps_db_GetRDCInfo – retrieves raw data capture information in the RDC_ACCT table
from the database server

• lps_db_GetSubIntvInfo – retrieves the subinterval information table from the database
server

• lps_db_InsertFileInfo – inserts L0R file information into the LPS database

• lps_db_Rollback – rolls back the database transactions and reports the rollback status

4.3 MACS Global Units
Management and control subsystem (MACS) global routines are as follows:

• mac_sems – contains two functions: psem and vsem. Psem decrements a passed
semaphore, and vsem increments a passed semaphore. It is used by the
mac_auto_archive and mac_auto_startL0R processes for resource sharing.

4.4 RDCS Global Units
RDCS global routines are as follows:

• rdc_CheckDiskSpace – Checks and reports on the disk space of a specified path. This
function has two arguments: path and thresholdMB. path defines the path where the
disk space is to be checked; thresholdMB defines a threshold in megabytes used to
report a warning.

• rdc_DeIsolateProcess – Attempts to deisolate and unrestrict the specified processor,
and sets the process to a normal priority. This function has one argument:
processorNum. processorNum defines the processor to attempt to unrestrict. This
function should always be called before terminating the process if rdc_IsolateProcess
was used to restrict the processor. See: rdc_IsolateProcess.

DRAFT

LPS PRM 4–5

• rdc_DeviceFunctions – Encapsulates all HPDI device-specific routines. This unit
contains some code written by SGI to properly communicate HPDI with the device
driver also written by SGI. This unit does not contain the device driver software.

• rdc_FileSplit – Splits a specified path into its path and file components. This function
has three arguments: inpath, path, and file. inpath contains the path to split. path and file
will be returned to the caller containing the path portion of inpath and the file portion of
inpath, respectively.

• rdc_GetBinNumber – Returns the currently scheduled digital linear tape (DLT) BIN
number for tape archival. This function has two arguments: tapeLibBinFile and
binNum. tapeLibBinFile contains the name of the file to be used for reading the
scheduled DLT BIN number; binNum will be returned containing the currently
scheduled DLT BIN number. This function expects a tapeLibBinFile that contains a
single American Standard Code for Information Interchange (ASCII) integer that
defines the DLT BIN number currently scheduled for tape archival. If the specified
tapeLibBinFile file does not exist, failure is returned. See rdc_SetBinNumber and
rdc_TapeBinCount.

• rdc_GetEnvironment – Loads the values of the specified environment variables into
the variables specified in the provided structure. This function has two arguments:
numEnvVars and envVars. numEnvVars defines the number of environment variable
records contained within the envVars structure. Contained within the rdc.h/rdc_extern.h
header files is a macro called NUMBER that should be used to set numEnvVars. Also
contained within these header files is the structure definition rdcEnvStruct, which
defines the format of envVars. The envVars structure should be defined with “static char
*” variables, where this function will assign the values of the specified environment
variables. If the environment variables are not defined on the system, the static variables
will be set to the specified default values. For example:

static char *rawPath;

static char *tempPath;

rdcEnvStruct envVars[] = {

 {“LPS_RAWFILE_PATH”, (char **) &rawPath, “.”},

 {“LPS_TEMFILE_PATH”, (char **) &tempPath, “.”},

};

numEnvVars = NUMBER(envVars);

Specifies that two environment variables, LPS_RAWFILE_PATH and
LPS_TEMFILE_PATH, are to be extracted from the system and the values should be
assigned to the rawPath and tempPath static variables, respectively. If the values are not
defined on the system, the default values for both will be the current directory (“.”).

If numEnvVars is set to 0, this function does nothing.

DRAFT

LPS PRM 4–6

This function is called by the rdc_Init function or can be called independently by the
application. See: rdc_Init.

• rdc_Init – Designed to be used by all RDCS applications to eliminate repetitive
initialization source code. This function performs four tasks.

1. Initializes two global variables: rdc_host and rdc_user; rdc_host will be set to the
host string name (e.g., lps001) and rdc_user will be set to the user’s login ID (e.g.,
root)

2. Calls rdc_GetEnvironment to extract the system environment variables needed by
the application

3. Calls rdc_ParseCommand to parse the command line arguments passed to the
application (argc, argv)

4. Calls lps_ProcessInit to initialize the process in the same manner as all LPS
executables, which optionally sets up a signal handler, connects to the database,
and checks for a running capture process

This function has eight arguments: argc, argv, SigHandler, numOptions, options,
numEnvVars, envVars, and Connect. argc and argv should be provided as passed to the
application. SigHandler defines the signal handler to set up to catch general termination
signals. numOptions and options should be provided as specified in the description for
rdc_ParseCommand. numEnvVars and envVars should be provided as specified in the
description for rdc_GetEnvironment. Connect is a Boolean flag indicating whether a
connection should be made to the LPS database. See lps_ProcessInit,
rdc_GetEnvironment, and rdc_ParseCommand.

• rdc_IsolateProcess – Attempts to isolate and restrict the specified processor and sets
the process to the highest nondegrading priority. This function has one argument:
processorNum. processorNum defines the processor to attempt to restrict. See
rdc_DeIoslateProcess.

• rdc_LoadTape – Loads a tape from the specified DLT BIN. This function has two
arguments: device and binNum. device specifies the DLT robotic arm device, and
binNum specifies the DLT BIN number where the tape is located. See rdc_UnloadTape.

• rdc_LogFileError – Provides a means of logging a meaningful interpretation of the
system errno to the LPS Journal when a file access or input/output (I/O) error has
occurred. This function has two arguments: description and filename. description
should be passed as a meaningful description of the file that produced the error (e.g.,
Capture Accounting). filename contains the actual filename of the file that produced the
error. If the filename is not known, a NULL value should be passed. This function
currently there handles a limited number of errno values. This function was designed to
allow for future expansion of additional errno values.

• rdc_LogShutdownMessage – Provides all RDCS processes with a means to log a
standard shutdown message given a termination status. This function has one argument:

DRAFT

LPS PRM 4–7

status. status defines the process RETURN_CODE that is being reported on shutdown
of the process.

• rdc_ParseCommand – Loads the values of the command line arguments into the
variables specified in the provided structure. This function has four arguments: argc_in,
argv_in, numOptions, and options. argc_in and argv_in should be provided as passed to
the application “main,” or should be in the same format. numOptions defines the
number of command line argument records contained within the options structure.
Contained within the rdc.h/rdc_extern.h header files is a macro called NUMBER that
should be used to set numOptions. Also contained within these header files is the
rdcOptionStruct structure definition, which defines the format of options. The options
structure should be defined with static variables, where this function will place the
values of the specified command line arguments. Adequate memory allocation must
exist for any destination arrays If the command line arguments do not exist on the
command line, the static variables will be returned unchanged.

Three different command line argument types are defined for RDCS. These values are
specified in an enumerated type contained within the rdc.h/rdc_extern.h header files
called rdcOptionType. The possible values are rdcArg, rdcNoArg, and rdcFile. rdcArg
indicates that the command line option requires an argument. rdcNoArg indicates that
the command line option is a Boolean flag (provided or not provided). rdcFile indicates
that the final command line argument is a filename (no option), e.g., rdc_Save filename.
For example,

“static Boolean flag = FALSE;”

static char argument[512];

static char file[512];

rdcEnvStruct options[] = {

 {“-x”, rdcArg, (void *) &argument, 512},

 {“-y”, rdcNoArg, (void *) &flag, NULL},

 {“(char*NULL)”, rdcFile, (void *) &file, 512},

};

numOptions = NUMBER(options);

specifies that three command line arguments are allowed to be passed to this
application, -x, -y, and (char*NULL), and the values should be assigned to the
argument, flag, and file static variables, respectively. The first structure record element
defines the allowed option. The second record element defines the type of option. The
third record element specifies the destination variable to hold the value. The last record
element defines the maximum allowed length of the argument or file (the destination
array size). If the command line arguments are not provided, then the values for the
static variables will be unchanged.

DRAFT

LPS PRM 4–8

If numOptions is set to 0, this function does nothing.

This function is called by the rdc_Init function or can be called independently by the
application. See rdc_Init.

• rdc_ResumeProcess – Sends a resume signal (SIGCONT) to the process group leader
defined by the #define RDC_L0R_GROUPLEADER. This #define is contained with
the global RDCS header files rdc.h/rdc_extern.h. This function attempts to resume
execution of all the processes running in the same group as the group leader. Processing
should be suspended with a call to rdc_SuspendProcess. It should be noted that for
SIGCONT to work, the process calling this function must be run as “root.” This can be
accomplished two ways:

1. The user could be logged in as “root” when the process is executed.

2. The executable must have the Set Group ID bit set in the permissions, and the
executable must be owned by “root.” This is the preferred option.

 Refer to chmod(1) for details. The second method is used within LPS. See
rdc_SuspendProcess.

• rdc_SetBinNumber – Sets the next scheduled DLT BIN number for tape archival. This
function has two arguments: tapeLibBinFile and binNum. tapeLibBinFile contains the
name of the file to be used for writing the next scheduled DLT BIN number, binNum
contains the next scheduled DLT BIN number. If tapeLibBinFile does not exist, one is
created prior to exiting. See rdc_GetBinNumber and rdc_TapeBinCount.

• rdc_ShutDown – Two philosophies for signal handling exist within LPS. First, the
signal handler cleans up the application and exits. Processing is halted, and the signal
handler does not return to the application for continued processing. Second, the signal
handler simply sets a global variable indicating that a signal was received and returns to
the application for continued processing. This function subscribes to the first method.
This signal handler performs three functions:

1. A global function pointer variable is called (if set) to clean up the application. This
global variable is defined in the rdc.h/rdc_extern.h header files and is called
rdc_CleanupFPtr.

2. rdc_LogShutdownMessage is called to log an appropriate shutdown message.

3. The function calls exit(2) to exit the application with an appropriate termination
status.

 This function has one argument: sig. sig is provided by the Kernel indicating the signal
that caused the processing interruption. This function could be, but should not be, called
directly by an application. It is intended to be solely for signal handling. See
rdc_LogShutdownMessage.

• rdc_SuspendProcess – Sends a suspend signal (SIGSTOP) to the process group leader
defined by the #define RDC_L0R_GROUPLEADER. This #define is contained with

DRAFT

LPS PRM 4–9

the global RDCS header files rdc.h/rdc_extern.h. This function attempts to suspend, or
put to sleep, all the processes running in the same group as the group leader.
Resumption of processing should be performed with a call to rdc_ResumeProcess. It
should be noted that for SIGSTOP to work, the process calling this function must be run
as “root.” This can be accomplished two ways

1. The user could be logged in as root when the process is executed.

2. The executable must have the Set Group ID bit set in the permissions, and the
executable must be owned by “root.” This is the preferred option.

 Refer to chmod(1) for details. The second method is used within LPS. See
rdc_ResumeProcess.

• rdc_System – “Mirrors” the UNIX system(2) command with the one exception.
system(2) returns a success or failure depending on whether is successfully executed the
specified process. rdc_System has the same behavior, except that it returns the return
status of the specified process when it has a successful fork/exec of the process. This
means that even with a successful fork/execution of the process, the rdc_System
function could still return a failure status. This does not happen with the UNIX
system(2). This function has one argument: cmd. cmd defines the command that
requires execution. cmd should be provided as defined in system(2). See
rdc_SystemMonitor.

• rdc_SystemMonitor – Works similarly to the rdc_System command, except that the
return is immediate. This function does not wait for the completion of the
forked/executed process, but is designed to be called repetitively until the process
terminates. This allows the caller to monitor the forked process. Function return values
indicate the current state of the forked/executed process. This function adds an
argument to the rdc_System definition: pid. pid will be returned to the caller containing
the process ID of the forked/executed process. Repetitive calls to this function require
that pid be passed for each call. This first time this function is called, pid will be set.
Successive calls will reference the value in pid. See rdc_System.

 NOTE: Only one process can be monitored at a time.

• rdc_TapeBinCount – Determines the number of DLT BINs available on the specified
DLT device. This function has three arguments: binCount, device, and tmpDir.
binCount will be returned containing the total number of DLT BINs available on the
specified device. tmpDir specifies the temporary directory to be used for generating
internal temporary files. See rdc_GetBinNumber and rdc_SetBinNumber.

• rdc_TermSig – Two philosophies for signal handling exist within LPS. First, the signal
handler cleans up the application and exits. Processing is halted, and the signal handler
does not return to the application for continued processing. Second, the signal handler
simply sets a global variable indicating that a signal was received, and returns to the
application for continued processing. This function subscribes to the second method.
This signal handler performs one function. If the global variable global_pid, defined in
rdc.h/rdc_extern.h, is set, this function attempts to terminate the process specified by the

DRAFT

LPS PRM 4–10

variable. This function has one argument: sig . sig is provided by the Kernel indicating
the signal that caused the processing interruption. This function is only used by the
RDCS Restage process, but should be enhanced for future use by the RDCS Save
process, which would eliminate the rdc_SaveSignalHandler function.

• rdc_TimeDiff – Returns the difference in seconds of two LPS time structures
(lps_TimeStruct). This function has two arguments: time1 and time2. time1 and time2
contain the LPS time structures used to perform the calculation. This function will
return the absolute value of the difference in seconds (ordering does not matter) or a
#define RDC_TIMEDIFF_ERROR if failure occurs.

• rdc_TimeString2Struct – Converts an RDCS time string (YYDDDHHMMSS) to an
LPS time structure (lps_TimeStruct). This function has two arguments: timeString and
timeStruct. timeString contains the RDCS time string in the format YYDDDHHMMSS;
timeStruct will be returned containing the LPS time structure corresponding to
timeString. See rdc_TimeStruct2String.

• rdc_TimeStringValid – Validates an RDCS time string. This function has one
argument: timeString. timeString should be in YYDDDHHMMSS format. A value of
TRUE is returned if the timeString is valid and a value of FALSE is returned if it is not.

• rdc_TimeStruct2String – Converts an LPS time structure (lps_TimeStruct) to an
RDCS time string (YYDDDHHMMSS). This function has two arguments: timeStruct
and timeString. timeStruct contains the LPS time structure; timeString will be returned
to contain the corresponding RDCS time string in YYDDDHHMMSS format. See
rdc_TimeString2Struct.

• rdc_UnloadTape – Unloads a tape from the specified DLT BIN. This function has two
arguments: device and binNum. device specifies the DLT robotic arm device, and
binNum specifies the DLT BIN number where the loaded tape is to reside. See
rdc_LoadTape.

• rdc_db_DeleteRDCFiles – Performs deletion of the raw wideband data file and
associated accounting file. This DBAR requires two arguments:
rdc_deleteFileNameArg and rdc_unconditionalDelete. This DBAR will query the
RDC_ACCT database table to establish that the specified raw wideband data file
(rdc_deleteFileNameArg) has been successfully archived to tape and L0R processed to
completion. If the raw wideband data meets these criteria, the files are deleted. If the
raw wideband data does not meet these criteria, the files are left on the system and a
message is generated. The database record validation may be overridden with the
rdc_unconditionalDelete flag set to TRUE.

• rdc_db_FileExistence – Establishes whether the specified raw wideband data file has
an associated record in the RDC_ACCT database table. This DBAR has two arguments:
rawFilename and num. rawFilename is used as the RDC_ACCT database table key, and
num will be returned to the caller containing the number of records found that contain
rawFilename.

DRAFT

LPS PRM 4–11

• rdc_db_LoadLabelParms – Loads the specified structure with tape label information,
extracted from the RDC_ACCT database table, and associated with a particular raw
wideband filename. This DBAR has two arguments: rawFilename and rdc_LabelArgs.
rawFilename is used as the key to perform the database query. rdc_LabelArgs will be
returned to the caller containing the tape label information extracted from the queried
record. The tape label structure definition is contained within the header files
rdc_GenLabel.h and rdc_GenLabelExtern.h and is called rdcLabelStruct.

 NOTE: This unit is unconventional in the sense that it performs a database connect and
disconnect instead of expecting the database connection to be performed by the caller.
All other RDCS DBARs leave the connection to the caller. For convention, this DBAR
should eventually be modified to remove the database connection and disconnection. In
addition, to maintain a consistency of treating the DBARs as global functions, the
rdcLabelStruct definition should be moved to the rdc.h and rdc_extern.h header files
and removed from the existing location.

• rdc_db_RegisterProcess – Registers or unregisters the current process into/from the
PROCESS_ID database table. This DBAR has two arguments: processName and
regType. processName defines the name that the calling process wants to register into
the database, e.g., RDC_SAVE. regType indicates whether the process is registering or
unregistering. regType is defined as the enumerated rdcRegisterType defined in the
rdc.h and rdc_extern.h header files.

 NOTE: Two units currently exist for the MACS that performs this same function:
mac_db_RegL0RPID.pc and mac_db_UnregL0RPID.pc. Unfortunately, these units
were written specifically for L0R processing and could not be reused in the RDCS as
written. This unit was written more generically to handle any process registration and
could, eventually, be moved to the LPS globals and integrated into the MACS. This
would potentially eliminate unneeded source.

• rdc_db_SetArchiveFlag – Sets the ARCHIVE_FLAG in the RDC_ACCT database
table for the specified raw wideband data filename. This DBAR has two arguments:
rdc_Filename and rdc_ArchiveFlag. rdc_Filename specifies the raw wideband data
filename to be used as the query key into the RDC_ACCT database table.
rdc_ArchiveFlag is a Boolean flag indicating the archival state of the raw wideband
data filename (rdc_Filename).

 NOTE: rdc_ArchiveFlag currently is defined as an int. This is not incorrect, but for
consistency, should be changed to Boolean.

• rdc_db_SetOnLineFlag – Used to bring the LPS database to a consistent state by
setting the ON_LINE_FLAG in the RDC_ACCT database table to indicate which raw
wideband data files are currently online. This DBAR has no arguments. Initially, this
unit sets all RDC_ACCT records to indicate an offline status. It then proceeds to
identify the raw wideband data files that are online, and sets the associated RDC_ACCT
record to indicate that the file is online.

DRAFT

LPS PRM 4–12

 NOTE: At this time, this unit does not verify the existence of both the raw wideband
data file and the associated accounting file. It only checks for the raw wideband data
file. This unit should be enhanced to also check for the associated accounting file.

• rdc_db_WriteAcctToDb – Given a raw wideband data accounting file, inserts a new
record into the RDC_ACCT database table associated with the raw wideband data. This
DBAR has two arguments: RDCAcctFD and RDCOnlineFlag. RDCAcctFD is a file
descriptor for an opened raw wideband data accounting file. RDCOnlineFlag is a
Boolean flag indicating the online state of the raw wideband data.

 NOTE: RDCOnlineFlag currently is defined as an int. This is not incorrect, but for
consistency, should be changed to Boolean.

• rdc_db_WriteOnLineFlag – Sets the ON_LINE_FLAG in the RDC_ACCT database
table for the specified raw wideband data filename. This DBAR has two arguments:
rdc_Filename and rdc_OnLineFlag. rdc_Filename specifies the raw wideband data
filename to be used as the query key into the RDC_ACCT database table.
rdc_OnLineFlag is a Boolean flag indicating the online state of the raw wideband data
filename (rdc_Filename).

NOTE: rdc_OnLineFlag currently is defined as an int. This is not incorrect, but for
consistency, should be changed to Boolean.

4.5 RDPS Global Units
Raw data processing subsystem (RDPS) global routines belong to the following categories:

• Frame synchronization

• Cyclic redundancy check (CRC)

• Reed-Solomon (RS) decoder

• RS code block

• Bose-Chaudhuri-Hocquenghem (BCH) decoder

4.5.1 Frame Synchronization

• fs_align_frames_n_output – aligns frames and calls output module

• fs_frame_synchronization – locates and byte synchronizes frames in raw data

• fs_get_stats – retrieves statistics of frame synchronization process (FSP) so far

• fs_initialize – initializes FSP

• fs_match_fsp – checks if FSP exists at bit location

• fs_match_fsp_slip – checks if FSP found with range of bits

• fs_pn_decode – CCSDS pseudorandom noise decodes the frame

DRAFT

LPS PRM 4–13

• fs_reverse_bits – reverses bits in a frame

• fs_terminate – terminates FSP

• fs.h – defines tolerance of SCLF mode and parameters used in frame synchronization

4.5.2 Cyclic Redundancy Check

• rdp_CRCGenTable – generates table for CRC checksum calculation

• rdp_CRCCheckSum – performs CRC checksum calculation

4.5.3 Reed-Solomon Decoder

• rdp_RSD – deinterleaves the data, performs RS decoding on each encoded data frame

4.5.4 Reed-Solomon Code Block

• rsd.h – defines RS decoder parameters and how to set them to decode RS codes

• gf16.gft – generates conventional table

4.5.6 BCH Decoder

• rdp_BCHBuildMsnQuadTable – reads in Mission Quad table from
rdp_BCHQuadFile

• rdp_BCHCreateTransTable – generates BCH table for deinterleave

• rdp_BCHMakeMsnSyndromeTable – calculates syndromes for mission codeblocks

• rdp_BCHMsnCalcSyndromes – calculates syndromes for mission codeblocks

• rdp_BCHMsnChienSearch – finds roots to error locator polynomial for mission
codeblocks

• rdp_BCHMsnDecTree – creates mission locator polynomial for Chien search

• rdp_BCHMsnDivide – divides one element of a Galois field (mission field) by another

• rdp_BCHPtrCalcSyndromes – calculates syndromes for pointer codeblocks

• rdp_BCHPtrChienSearch – finds the roots to error locator polynomial for pointer
codeblocks

• rdp_BCHPtrDecTree – creates pointer locator polynomial for Chien search

• rdp_BCHPtrDivide – divides one element of Galois field (pointer field) by another

• rdp_BCHTransposeCadu – transposes channel access data unit (CADU) and correct
codeblocks if necessary

• quad_file – quadratic table

DRAFT

LPS PRM 4–14

4.6 MFPS Global Units
There are no major frame processing subsystem (MFPS) global routines.

4.7 PCDS Global Units
In addition to the RSL functions described in Section 3.5, the PCDS includes the following
global routines:

• pcd_1750AToDouble – converts a MIL-STD-1750A format floating point number to a
type double floating point number

• pcd_ConstructTime – converts a string representation of spacecraft time in the form
YYYY:DDD:HH:MM:SS.xxxxx to a different string in the form
YYYYDDDHHMMSSxxxx and vice versa

• pcd_LagrangeInt – performs polynomial interpolation using a straightforward
implementation of Lagrange’s formula

• pcd_TwosCompConv – converts a 4-byte two’s complement number to double
precision

4.8 IDPS Global Units
There are no IDPS global routines.

4.9 LDTS
4.9.1 Global Units

LPS data transfer subsystem (LDTS) global routines are as follows:

• ldt_AcceptClient – accepts ECS client socket connection

• ldt_Broadcast – sends a message via socket to ECS

• ldt_CreateServer – creates receive data delivery notice (DDN) rendezvous server for
receiving DDN messages from ECS

• ldt_GetCurrentEDCTime – obtains current EDC time and places it into a format for
NASA installations

• ldt_PackHeader – packs message header with message type and message length
information

• ldt_ProcTermSig – cleans up process and reports the signal on receipt of a termination
signal

• ldt_ReadSocket – reads messages from socket

• ldt_SelectSocket – checks socket activity using blocking I/O

DRAFT

LPS PRM 4–15

• ldt_SetSocketOpts – sets receive or send socket buffer size and sets client socket to
non_blocking I/O

• ldt_SocketResponse – responds to status of reading a socket message

• ldt_TimeDiff – calculates delta time of two times

• ldt_UnpackHead – reads message type and message length from message header

• ldt_WriteSocket – writes data to a socket

• ldt_create_client – opens client socket connection to a specified host/port

• ldt_day_to_month – given the day of year and 4-digit year, returns the month and the
day within the month

• ldt_establish_client – opens socket connection to ECS server, sends authentication
request, and waits for authentication response

• ldt_free_dan – frees allocated memory for created data availability notices (DANs)

• ldt_insert_time_stamp – builds ISO-8601 time format string

• ldt_keyscan_ld – scans keywords from a Parameter Value Language (PVL) buffer

• ldt_next_string – obtains address of next string with a protocol message

• ldt_put_string – inserts a string to a specified location

• ldt_save_message – saves control messages between LPS and ECS into specified
location

• ldt_string_fail – detects out-of-bound or runaway string

4.9.2 Reuse Code

The LDTS reuses the code from the Data Distribution Facility (DDF) Simulator project, Mission
Operations and Systems Development Division (GSFC), in the areas discussed in the following
subsections.

4.9.2.1 TCP/IP Sockets

The LDTS reuses the functions to implement Berkeley socket communication. Section 4.9.1
provides the functional description.

• ldt_AcceptClient

• ldt_Broadcast

• ldt_CreateServer

• ldt_ReadSocket

DRAFT

LPS PRM 4–16

• ldt_SetSocketOpts

• ldt_SocketResponse

• ldt_WriteSocket

• ldt_create_client

• ldt_establish_client

4.9.2.2 Create DAN

The LDTS reuses the following functions to create DAN message:

• ldt_CreateDAN – creates DAN message in ASCII format

• ldt_db_ExtrDANStruct – extracts LPS L0R file information from database and
constructs a DAN message

• ldt_read_dan_info – reads a DAN from disk into a buffer

• ldt_write_dan_info – writes a DAN from a buffer into a file in ASCII format

4.9.2.3 Miscellaneous

The miscellaneous functions excluding the Transmission Control Protocol/Internet Protocol
(TCP/IP) socket functions listed in Section 4.9.1 are also reused from the DDF Simulator project.

DRAFT

LPS PRM 5–1

Section 5. Portability Issues

5.1 long long
The LPS software makes use of the “long long” type to declare a 64-bit integer. Under
ANSI/ISO C on the SGI, this is allowed but results in a warning.

5.2 HPDI Device Driver
See Section 2.3.

5.3 System Software Calls
The following list does not include system library functions called by LPS global functions,
Pro*C precompiled DBARs, or the frame synchronization software.

5.3.1 LPS

The LPS globals incorporate the following system library functions:

access malloc shmat strchr

atoi memcpy shmctl strcmp

execv memmove shmdt strcpy

fabs mkdir shmget strlen

fork msgctl sigaction strstr

fprintf msgget sigaddset strtok

getenv msgrcv sigemptyset strtol

gethostname msgsnd sprintf syslog

getpgrp semctl sqlglm time

gettimeofday semget stat

leap semop strcat

5.3.2 MACS

The MACS incorporates the following system library functions:

alarm getenv semop strcat

atof getpgrp setpgid strcmp

atoi getpid sigaction strcpy

closedir kill sigdelset strlen

exit malloc sigfillset strncpy

fclose opendir sigismember strrchr

feof readdir signal strstr

fgets remove sigpending strtok

fopen rewind sigprocmask wait

fprintf rmdir sigsuspend waitpid

free semctl sprintf

fscanf semget statfs

DRAFT

LPS PRM 5–2

5.3.3 RDCS

The system commands to perform processor isolation and restriction, as well as setting process
priority, are SGI specific. These system calls are contained with the rdc_IsolateProcess.c and
rdc_DeIsolateProcess.c units.

The system function stacker(1M) is used to communicate with the DLT device. The units that
reference this function are rdc_LoadTape.c, rdc_UnloadTape.c, and rdc_TapeBinCount.c.

The system function killall(1M) is used by the rdc_SuspendProcess.c, rdc_ResumeProcess.c, and
rdc_Terminate.c units.

The system function stat64(2) is used to obtain file statistics for a raw wideband data file due to
the possible size of the file exceeding 32-bit file system limitations. This system function is only
referenced by rdc_CaptureCalcAccounting.c.

The unit rdc_vmereset.c was developed by SGI and uses some SGI-specific system commands.
This unit should be taken into careful consideration before porting to another platform or
operating system.

5.3.4 RDPS

The RDPS incorporates the following system library functions:

open close

exit read

memalign

5.3.5 MFPS

The MFPS incorporates the following system library functions:

open

close

write

5.3.6 PCDS

The PCDS incorporates the following system library functions:

acos ceil fmod pow

asin cos isnan sin

atan fabs memcpy sprintf

atan2 floor memset sqrt

5.3.7 IDPS

The IDPS incorporates the following system library functions:

fopen read getenv stat

fclose write pipe getpgrp

fread fflush mkfifo wait

fwrite fork unlink exit

DRAFT

LPS PRM 5–3

5.3.8 LDTS

The LDTS incorporates the following system library functions:

accept getenv read strchr

access gethostbyname realloc strcmp

bind getpid return strcpy

calloc gmtime select strlen

close kill setsockopt strncmp

connect leap sigaction strtok

exit listen sleep stat

fcntl malloc socket sysinfo

FD_ZERO memcpy sprintf system

FD_SET memset sscanf write

fprintf nanosleep strcat

free open strcasecmp

5.4 Other Portability Issues
The PCDS software makes use of the “#pragma pack(1)” directive. This may not behave the
same if it is ported to a different system.

DRAFT

LPS PRM 6–1

Section 6. Development Environment

6.1 Directory Structure
The LPS directories follow a hierarchical structure. They are under the $LPS_HOME home
directory, which is configurable under different platforms. The directories are created by the
makedir_lps and makedir_system scripts during system setup. The top level includes the
following subdirectories: bin, COTS, data, db, global, journal, man, outfile, rawfile, reports,
scripts, tables, tools, troublefile, ui, and seven subsystem directories. Each subsystem directory
contains eight subdirectories: bin, data, db, global, include, obj, scripts, and src. Each global or
db directory may break down further into the include, obj, and src subdirectories. The src
directories under RDCS, IDPS, and LDTS will contain the source files and one or more srcn
(where n is a numerical number starting with 1) subdirectories to accommodate multiple
programs under an src directory. The purpose of each directory is as follows:

• bin – contains the executables

• COTS – contains COTS and GOTS software

• data – contains data files used in LPS

• db – contains database access source files, includes, object codes, and libraries used by
the subsystem or LPS

• global – contains global routines, includes, object codes, and libraries used by the
subsystem or LPS

• include – contains include files with .h extension

• journal – contains the LPS Journal files

• man – contains LPS man pages

• obj – contains object codes with the .o extension and source libraries with the .a
extension

• outfile – contains the LPS L0R output files

• rawfile – contains LPS captured raw data files

• reports – contains LPS generated reports

• scripts – contains scripts used by the subsystem or LPS

• src – contains source codes with a .c or .pc extension and Imakefile, lmake, and
Makefile

• tables – contains tables referenced by LPS

• tools – contains software tools used by LPS for development

DRAFT

LPS PRM 6–2

• troublefile – contains the trashed major frame files

• ui – contains ORACLE Forms and other user interface files

6.1.1 LPS-Developed Software

LPS-developed software and their locations are as follows:

$LPS_HOME/bin

$LPS_HOME/data

$LPS_HOME/db/include

$LPS_HOME/db/obj

$LPS_HOME/db/src

$LPS_HOME/global/include

$LPS_HOME/global/obj

$LPS_HOME/global/src

$LPS_HOME/man

$LPS_HOME/scripts

$LPS_HOME/tables

$LPS_HOME/tools/bin

$LPS_HOME/tools/include

$LPS_HOME/tools/obj

$LPS_HOME/tools/src

$LPS_HOME/ui/bin

$LPS_HOME/ui/include

$LPS_HOME/ui/obj

$LPS_HOME/ui/src

$LPS_HOME/IDPS//bin

$LPS_HOME/IDPS/data

$LPS_HOME/IDPS/db/include

$LPS_HOME/IDPS/db/obj

$LPS_HOME/IDPS/db/src

$LPS_HOME/IDPS/global/include

DRAFT

LPS PRM 6–3

$LPS_HOME/IDPS/global/obj

$LPS_HOME/IDPS/global/src

$LPS_HOME/IDPS/include

$LPS_HOME/IDPS/scripts

$LPS_HOME/IDPS/src

$LPS_HOME/LDTS/bin

$LPS_HOME/LDTS/data

$LPS_HOME/LDTS/db/include

$LPS_HOME/LDTS/db/obj

$LPS_HOME/LDTS/db/src

$LPS_HOME/LDTS/global/include

$LPS_HOME/LDTS/global/obj

$LPS_HOME/LDTS/global/src

$LPS_HOME/LDTS/include

$LPS_HOME/LDTS/scripts

$LPS_HOME/LDTS/src

$LPS_HOME/MACS/bin

$LPS_HOME/MACS/data

$LPS_HOME/MACS/db/include

$LPS_HOME/MACS/db/obj

$LPS_HOME/MACS/db/src

$LPS_HOME/MACS/global/include

$LPS_HOME/MACS/global/obj

$LPS_HOME/MACS/global/src

$LPS_HOME/MACS/include

$LPS_HOME/MACS/scripts

$LPS_HOME/MACS/src

$LPS_HOME/MFPS/bin

$LPS_HOME/MFPS/data

DRAFT

LPS PRM 6–4

$LPS_HOME/MFPS/db/include

$LPS_HOME/MFPS/db/obj

$LPS_HOME/MFPS/db/src

$LPS_HOME/MFPS/global/include

$LPS_HOME/MFPS/global/obj

$LPS_HOME/MFPS/global/src

$LPS_HOME/MFPS/include

$LPS_HOME/MFPS/scripts

$LPS_HOME/MFPS/src

$LPS_HOME/PCDS/bin

$LPS_HOME/PCDS/data

$LPS_HOME/PCDS/db/include

$LPS_HOME/PCDS/db/obj

$LPS_HOME/PCDS/db/src

$LPS_HOME/PCDS/global/include

$LPS_HOME/PCDS/global/obj

$LPS_HOME/PCDS/global/src

$LPS_HOME/PCDS/include

$LPS_HOME/PCDS/scripts

$LPS_HOME/PCDS/src

$LPS_HOME/RDCS/bin

$LPS_HOME/RDCS/data

$LPS_HOME/RDCS/db/include

$LPS_HOME/RDCS/db/obj

$LPS_HOME/RDCS/db/src

$LPS_HOME/RDCS/global/include

$LPS_HOME/RDCS/global/obj

$LPS_HOME/RDCS/global/src

$LPS_HOME/RDCS/include

DRAFT

LPS PRM 6–5

$LPS_HOME/RDCS/scripts

$LPS_HOME/RDCS/src

$LPS_HOME/RDPS/bin

$LPS_HOME/RDPS/data

$LPS_HOME/RDPS/db/include

$LPS_HOME/RDPS/db/obj

$LPS_HOME/RDPS/db/src

$LPS_HOME/RDPS/global/include

$LPS_HOME/RDPS/global/obj

$LPS_HOME/RDPS/global/src

$LPS_HOME/RDPS/include

$LPS_HOME/RDPS/scripts

$LPS_HOME/RDPS/src

6.1.2 Location of COTS/GOTS Software

COTS/GOTS software contains the ORACLE, HDF, HDF-EOS, RSL, and frame
synchronization subdirectories. COTS/GOTS is located in the $COTS_HOME directory, except
for ORACLE. The locations of the software are shown in the following subsections.

6.1.2.1 ORACLE

$ORACLE_HOME

6.1.2.2 HDF

$HDF_HOME/bin

$HDF_HOME/include

$HDF_HOME/lib

$HDF_HOME/scripts

$HDF_HOME/src

6.1.2.3 HDF-EOS

$HDF_EOS/lib

6.1.2.4 RSL

$PCDS_GLOBAL_INC

DRAFT

LPS PRM 6–6

$PCDS_GLOBAL_OBJ

$PCDS_GLOBAL_SRC

6.1.2.5 Frame Synchronization

$FS_HOME/include

$FS_HOME/obj

$FS_HOME/scripts

$FS_HOME/src

6.2 Environment Files
The LPS uses two C Shell scripts (.lpsrc and .lpsdevrc) to initialize the environment variables.
.lpsrc sets up the LPS operational/test environment for running LPS. .lpsdevrc sets up the LPS
development environment for compiling and building LPS.

To execute these two scripts, the following lines should be added to a user’s .cshrc file:

unsetenv PATH MANPATH

setenv LPS_HOME <the LPS root directory>

source $LPS_HOME/.lpsrc

(or source $LPS_HOME/.lpsdevrc)

NOTE: .lpsdevrc also calls .lpsrc so it is not necessary to source both scripts explicitly.

6.2.1 .lpsrc

The following environment variables and their values in .lpsrc are set as follows:

setenv PATH /usr/local/bin:/usr/bin:/bin:/usr/etc:/etc:/usr/bsd:/usr/sbin:/sbin

setenv MANPATH /usr/share/catman:/usr/share/man:/usr/catman:/usr/local/man

setenv LD_LIBRARY_PATH /usr/lib

setenv LD_LIBRARYN32_PATH /usr/lib32

setenv LD_LIBRARY64_PATH /usr/lib64

setenv X11HOME /usr/bin/X11

setenv PATH $X11HOME/:$PATH

setenv ORACLE_HOME /usr/app/oracle/product/7.3.2

setenv PATH $ORACLE_HOME/bin:$PATH

setenv LD_LIBRARY_PATH $ORACLE_HOME/lib:$LD_LIBRARY_PATH

setenv ORACLE_PATH $PATH

DRAFT

LPS PRM 6–7

setenv ORACLE_SID LPS

setenv ORACLE_TERM xterm

setenv TNS_ADMIN /usr/app/oracle/client/developer2000/1.3.1/tns

setenv TWO_TASK lps

setenv LPS_BIN $LPS_HOME/bin

setenv PATH $LPS_BIN/:$PATH

setenv MANPATH $LPS_HOME/man:$MANPATH

setenv LPS_DANFILE_PATH $LPS_HOME/DAN

setenv LPS_DDNFILE_PATH $LPS_HOME/DDN

setenv LPS_JOURNAL_PATH /u03/tmp

setenv LPS_OUTFILE_PATH $LPS_HOME/outfile

setenv LPS_RAWFILE_PATH $LPS_HOME/rawfile

setenv LPS_REPORT_PATH $LPS_HOME/reports

setenv LPS_TAPE_DEV /dev/rmt/tps131d5

setenv LPS_TABLE_PATH $LPS_HOME/tables

setenv LPS_TEMPFILE_PATH /u03/tmp

setenv LPS_TROUBLEFILE_PATH $LPS_HOME/troublefile

setenv LPS_IAS_PARMS_PATH $LPS_HOME/iasparms

setenv LPS_CONT_SCHED_PATH $LPS_HOME/schedules

setenv LPS_PRINTER_DEVICE /dev/plp

setenv LPS_TAPE_LIBRARY_DEV /dev/scsi/sc131d510

setenv RDC_DEVICE /dev/hpdiB

setenv RDC_STATUS_INTERVAL 30

setenv RDC_THRESH_SYSTEMDISK 0.01

setenv LPS_CAPTURE_PROCESSOR 1

6.2.2 .lpsdevrc

The following environment variables and their values in .lpsdevrc are set as follows:

setenv PURIFYHOME /usr/pure/purify

setenv PATH $PURIFYHOME/:$PATH

DRAFT

LPS PRM 6–8

setenv MANPATH $PURIFYHOME/man:$MANPATH

setenv HDF_HOME $LPS_HOME/COTS/hdf/4.0r2_IRIX_5.3

setenv HDF_BIN $HDF_HOME/bin

setenv HDF_INC $HDF_HOME/include

setenv HDF_OBJ $HDF_HOME/lib

setenv HDF_SRC $HDF_HOME/src

setenv HDF_SCRIPTS $HDF_HOME/scripts

setenv HDF_EOS $LPS_HOME/COTS/hdf/hdfeos

setenv PATH $LPS_HOME/tools/bin:$PATH

setenv PATH $LPS_HOME/IDPS/bin:$PATH

setenv PATH $LPS_HOME/LDTS/bin:$PATH

setenv PATH $LPS_HOME/MACS/bin:$PATH

setenv PATH $LPS_HOME/MFPS/bin:$PATH

setenv PATH $LPS_HOME/PCDS/bin:$PATH

setenv PATH $LPS_HOME/RDCS/bin:$PATH

setenv PATH $LPS_HOME/RDPS/bin:$PATH

setenv PATH $LPS_HOME/ui/bin:$PATH

setenv CVINSTRLIB $HOME

NOTE: .lpsdevrc sources $LPS_HOME/.env and $LPS_HOME/COTS/hdf/hdfeos/bin/sgi/
hdfeos_env.csh sets up additional environment variables.

6.2.3 Possible Upgrade Problems

Some root environment variables, such as LPS_HOME, ORACLE_HOME, HDF_HOME, and
HDF_EOS, need to be updated when a new version of each product is installed on the machine.

6.3 Compiler Considerations
6.3.1 Configuration Flags

Because LPS software is required to run under ANSI mode instead of an SGI platform’s default
extended ANSI mode, the extended ANSI (-xansi) flag is replaced by an -ansi flag in
/usr/lib/X11/config/sgi.cf. The following line shows the change in /usr/lib/X11/config/sgi.cf:

#define sgiCCOptions -ansi -D_BSD_SIGNALS sgiABIopts sgiABIdefs

NOTE: The RDCS uses the original SGI platform configuration file, sgi.cf with the -xansi flag
set.

DRAFT

LPS PRM 6–9

6.3.2 Expected Warning Messages

6.3.2.1 General

The following warning messages are produced when compiling the LPS source containing long
long type to produce the object under ANSI mode:

cfe: Warning 799: pcd_db_GetFirstWrsScene.c, line 1236: ‘long long’ is not standard ANSI.
(3.1.1)

typedef long long __uint64_t;

---------------^

This keyword/type is not defined in strict ANSI mode.

cfe: Warning 799: /u03/LPS/b3/global/include/lps_annotated_cadu.h, line 78: ‘long long’ is
not standard ANSI. (3.1.1)

typedef long long

---------------^

This keyword/type is not defined in strict ANSI mode.

The following warning messages are produced when linking the LPS source objects or libraries
under SGI IRIX 6.2 operating system:

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/global/obj/libglobal.a is not used for
resolving any symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libxa.a is not used for resolving any
symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libsqlnet.a is not used for resolving any
symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libncr.a is not used for resolving any
symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libsqlnet.a is not used for resolving any
symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libclient.a is not used for resolving any
symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libgeneric.a is not used for resolving
any symbol.

ld: WARNING 84: /usr/app/oracle/product/7.3.2/lib/libnlsrtl3.a is not used for resolving any
symbol.

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/hdfeos/lib/sgi/libhdfeos.a is
not used for resolving any symbol.

DRAFT

LPS PRM 6–10

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/hdfeos/lib/sgi/libGctp.a is
not used for resolving any symbol.

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/4.0r2_IRIX_5.3/lib/
libmfhdf.a is not used for resolving any symbol.

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/4.0r2_IRIX_5.3/lib/libdf.a
is not used for resolving any symbol.

ld: WARNING 84:
/u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/4.0r2_IRIX_5.3/lib/libjpeg.a is not used
for resolving any symbol.

ld: WARNING 84: /u02/home/l7xlsrv/inteam/si/b3.1/COTS/hdf/4.0r2_IRIX_5.3/lib/libz.a is
not used for resolving any symbol.

ld: WARNING 84:
/u02/home/l7xlsrv/inteam/si/b3.1/COTS/frame_synchronization/obj/libfs.a is not used
for resolving any symbol.

ld: WARNING 84: /usr/lib/libsocket.so is not used for resolving any symbol.

ld: WARNING 84: /usr/lib/libnsl.so is not used for resolving any symbol.

ld: WARNING 85: definition of _ffs in /usr/lib/libnsl.so preempts that definition in
/usr/lib/libc.so.

ld: WARNING 134: weak definition of ffs in /usr/lib/libnsl.so preempts that weak definition
in /usr/lib/libc.so.

ld: WARNING 134: weak definition of gethostname in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_create in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _clnt_create_vers in /usr/lib/libnsl.so preempts that
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_create_vers in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_sperror in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_perror in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_sperrno in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_perrno in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

DRAFT

LPS PRM 6–11

ld: WARNING 85: definition of _clnt_perrno in /usr/lib/libnsl.so preempts that definition in
/usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_spcreateerror in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnt_pcreateerror in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _clntraw_create in /usr/lib/libnsl.so preempts that definition
in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clntraw_create in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _callrpc in /usr/lib/libnsl.so preempts that definition in
/usr/lib/libc.so.

ld: WARNING 134: weak definition of callrpc in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clnttcp_create in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clntudp_bufcreate in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of clntudp_create in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of netname2user in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _netname2user in /usr/lib/libnsl.so preempts that definition
in /usr/lib/libc.so.

ld: WARNING 134: weak definition of netname2host in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _netname2host in /usr/lib/libnsl.so preempts that definition
in /usr/lib/libc.so.

ld: WARNING 85: definition of _getnetname in /usr/lib/libnsl.so preempts that definition in
/usr/lib/libc.so.

ld: WARNING 134: weak definition of getnetname in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of user2netname in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of host2netname in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

DRAFT

LPS PRM 6–12

ld: WARNING 134: weak definition of pmap_set in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of pmap_unset in /usr/lib/libnsl.so preempts that weak
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of pmap_getmaps in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: WARNING 85: definition of _pmap_getmaps in /usr/lib/libnsl.so preempts that
definition in /usr/lib/libc.so.

ld: WARNING 134: weak definition of pmap_getport in /usr/lib/libnsl.so preempts that
weak definition in /usr/lib/libc.so.

ld: Giving up after printing 50 warnings. Use -wall to print all warnings.

6.3.2.2 RDCS

The rdc_DeviceFunctions.c unit cannot be compiled with the -ansi flag. This unit contains
software that communicates with the HPDI device. For compatibility with the SGI-developed
device driver, the extended ANSI flag (-xansi) must be used when compiling this unit.

6.4 Imakefiles
Due to the nature of configurability and portability of Imake, LPS chooses it to create the
Makefiles for building LPS-developed software instead of using the traditional Makefiles.
Although the Imake provides easier, simpler, open-ended mechanism to generate the Makefiles
on various platforms, two files need to be configured to cooperate platform-specific information:
Imake.rules and Imake.tmpl

The following lines in /usr/lib/X11/config/Imake.rules are added to the Imake rule base to
compile LPS source files with extension .c or .pc into the object codes, to clean up files under the
source directory, and to generate executables:

/*

 * Pro C compiler – Running pc unit through Pro C compile to get c units.

 */

#ifndef TurnPCUnitsIntoCUnits

#define TurnPCUnitsIntoCUnits() rm -f $*.c; cp $*.pc $*.c; @@\

chmod u+w $*.c; @@\

$(CC) -P -D_NO_LONGLONG $(INCLUDES) $(DEFINES) $*.c; \ @@\

sed “/#ident/d” $*.i > $*.ipc; \ @@\

$(ORACLE_PROC) iname=$*.ipc $(PROFLAGS); \ @@\

rm $*.ipc $*.i

DRAFT

LPS PRM 6–13

#endif /* TurnPCUnitsIntoCUnits */

/*

 * Pro C compiler – generate rules to build necessary things during make all.

 */

#ifndef NormalProCTarget

#define NormalProCTarget() @@\

.SUFFIXES: .pc .c .o .ln @@\

@@\

.pc.c: @@\

TurnPCUnitsIntoCUnits() @@\

@@\

FORCE: $(SRCS)

#endif /* NormalProCTarget */

/*

 * CleanTarget2 – generate rules to remove any garbage files

 */

#ifndef CleanTarget2

#define CleanTarget2() @@\

clean:: @@\

$(RM_CMD) FilesToClean2 @@\

@@\

cleaner:clean @@\

$(RM_CMD) FilesToCleaner2 ExtraFilesToClean “#”* @@\

$(RM_CMD) `ListPCUnitsAsCUnits()` @@\

@@\

ProofCleanTarget()

#endif /* CleanTarget2 */

/*

 * DependTargetWithPC – generate rules to compute dependencies for all files listed

DRAFT

LPS PRM 6–14

 * in $(SRCS).

 */

#ifndef DependTargetWithPC

#define DependTargetWithPC() @@\

DependDependency() @@\

depend:: @@\

RunProgram(DEPEND,$(DEPENDFLAGS) -- $(ALLDEFINES)
$(DEPEND_DEFINES) -- $

(SOURCESC) $(SOURCESPC))

@@\

#endif /* DependTargetWithPC */

/*

 * ObjectCompileWithPC – compile fragment for a normal object file

 */

#ifndef ObjectCompileWithPC

#define ObjectCompileWithPC(options) -@if [-f $*.pc]; then \ @@\

TurnPCUnitsIntoCUnits(); \ @@\

fi @@\

RemoveFile($@) @@\

$(CC) -c $(CFLAGS) options $*.c

#endif

/*

 * NormalLibObjCompileWithPC – compile fragment for a normal library object file

 */

#ifndef NormalLibObjCompileWithPC

#define NormalLibObjCompileWithPC(options) ObjectCompileWithPC(options)

#endif

/*

 * NormalLibraryObjectRulWithPC – for simple libraries

 */

DRAFT

LPS PRM 6–15

#ifndef NormalLibraryObjectRuleWithPC

#define NormalLibraryObjectRuleWithPC() @@\

.c.Osuf: @@\

NormalLibObjCompileWithPC($(_NOOP_))

#endif /* NormalLibraryObjectRuleWithPC */

/*

 * NormalLibraryObjectRulWithPC – for simple libraries

 */

#ifndef ListPCUnitsAsCUnits

#define ListPCUnitsAsCUnits() ls *.pc 2>/dev/null | sed “s/\.pc/\.c/p” | uniq |

tr ‘\012’ ‘\040’

#endif /* ListPCUnitsAsCUnits */

/*

 * ProjectLinkRule – link a program

 */

#ifndef ProjectLinkRule

#define ProjectLinkRule(program,options,objects,libraries) \

$(CCENVSETUP) $(PURIFY) $(QUANTIFY) $(CCLINK) -o program options objects
libraries $(EXTRA_LOAD_FLAGS)

#endif /* ProjectLinkRule */

/*

 * NormalProgramTarget – generate rules to compile and link the indicated

 * program; since it does not use any default object files, it may be used for

 * multiple programs in the same Imakefile.

 */

#ifndef ProjectProgramTarget

#define ProjectProgramTarget(program,objects,deplibs,locallibs,syslibs) @@\

ProgramTargetName(program): objects deplibs @@\

RemoveTargetProgram($@) @@\

ProjectLinkRule($@,$(LDOPTIONS),objects,locallibs syslibs) @@\

DRAFT

LPS PRM 6–16

@@\

clean:: @@\

RemoveFile(ProgramTargetName(program))

#endif /* NormalProgramTarget */

The following lines in /usr/lib/X11/config/Imake.tmpl are modified as shown:

#ifndef FilesToClean

#define FilesToClean *.CKP *.ln *.BAK *.bak *.i *.ipc tmpa* *.Osuf core errs ,*

*~ *.a .emacs_* tags TAGS make.log MakeOut PureFilesToClean QuantifyFilesToClean

#endif

#ifndef FilesToClean2

#define FilesToClean2 *.CKP *.BAK *.bak *.i *.ipc tmpa* *.Osuf core errs ,* *~ *

.a .emacs_* tags TAGS make.log MakeOut *.lis *.err *.met

#endif

#ifndef FilesToCleaner2

#define FilesToCleaner2 *.ln *.o *.d *.tcov *.a PureFilesToClean QuantifyFilesToClean

#endif

6.4.1 General Considerations

To generate the Makefiles using Imake, each source directory must have an Imakefile exist and
the filename must be called “Imakefile” exactly. The top portion of Imakefile displays the
options when calling the lmake script to compile the source files. The ORACLE directories and
ORACLE precompile information usually have to be modified according to the version of
ORACLE database installed in the system. The LPS global libraries may also vary if the
COTS/GOTS software has been changed.

Depending on the purpose of the Imakefile, the bottom portion of Imakefile varies: one for
generating libraries and one for generating executable targets. The examples of these Imakefile
templates are as follows:

Imakefile for generating libraries:

/***

#

Make Usage

#

#**/

DRAFT

LPS PRM 6–17

help:

@ echo “Usage:”

@ echo “ lmake help”

@ echo “ to see this help message.”

@ echo “”

@ echo “ lmake [debug | nodebug | cclint | optimize]”

@ echo “ to create $(LIBRARY).”

@ echo “”

@ echo “lmake lint”

@ echo “ to run lint on *.c and create llib-ldbp.ln.”

@ echo “”

@ echo “ lmake cadre”

@ echo “ to run reverse engineering bmdl tool on *.c files”

@ echo “”

@ echo “ lmake clean”

@ echo “ to remove *%, *~, *.lis, *.i, core, and dbp files.”

@ echo “”

@ echo “ lmake cleaner”

@ echo “ to remove *%, *~, *.lis, *.i, core, dbp, *.o, *.ln, precompiled units,”

@ echo “ $(LIBRARY), *.d , and *.tcov.”

/***

#

Extract Objects and Sources

#

#**/

#define PassCDebugFlags ‘CDEBUGFLAGS=$(CDEBUGFLAGS)’

OBJS= $(SRCS:.c=.o) XCOMM all object files

SOURCESCPC= $(SOURCESPC:.pc=.c) XCOMM all pc units turned into c files

/***

DRAFT

LPS PRM 6–18

*

* ORACLE directories

*

***/

ORACLE_LIB = $(ORACLE_HOME)/lib

ORACLE_PROC = $(ORACLE_HOME)/bin/proc

ORACLE_PRELIB= $(ORACLE_HOME)/precomp/lib

LD_LIBRARY_PATH = $(ORACLE_HOME)/lib

LIBRPC = $(ORACLE_LIB)/libncr.a

LIBSQLNET = $(ORACLE_LIB)/libsqlnet.a

NETLIBD = $(LIBSQLNET) $(LIBRPC) $(LIBSQLNET)

LIBGENERIC = $(ORACLE_LIB)/libgeneric.a

LIBCOMMON = $(ORACLE_LIB)/libcommon.a

LIBCLIENT = $(ORACLE_LIB)/libclient.a

LIBORA = $(LIBCLIENT) $(LIBCOMMON) $(LIBGENERIC)

LIBEPC = $(ORACLE_LIB)/libepc.a

LIBCORE = $(ORACLE_LIB)/libcore3.a

LIBCV6 = $(ORACLE_LIB)/libc3v6.a

LIBNLSRTL = $(ORACLE_LIB)/libnlsrtl3.a

CORELIBD = $(LIBNLSRTL) $(LIBCV6) $(LIBCORE) $(LIBNLSRTL) $(LIBCORE)
$(LIBNLSRTL)

TTLIBD = $(NETLIBD) $(LIBORA) $(LIBSQLNET) $(LIBRPC) $(LIBSQLNET)
$(LIBORA) $(CORELIBD) $(LIBEPC)

LIBSQL = $(ORACLE_LIB)/libsql.a

DRAFT

LPS PRM 6–19

LIBXA = $(ORACLE_LIB)/libxa.a

PROLDLIBS = $(LIBXA) $(LIBSQL) $(TTLIBD)

LIBMOD = $(ORACLE_PRELIB)/libmod.a

LIBPCC = $(ORACLE_PRELIB)/libpcc.a

LIBPGP = $(ORACLE_PRELIB)/libpgp.a

LIBPROC2 = $(ORACLE_PRELIB)/libproc2.a

EXTRALIB = $(LIBMOD) $(LIBPCC) $(LIBPGP) $(LIBPROC2)

ORACLELIBS = $(PROLDLIBS) $(EXTRALIB)

/***

*

* ORACLE precompile information

*

***/

PROFLAGS=ireclen=160 oreclen=160 select_error=no mode=ANSI code=ANSI_C
DBMS=V7

PCCFLAGS=include=$(PCCINC) ireclen=160 oreclen=160 select_error=no

/***

#

LPS Global libraries

#

#**/

XGLOBAL_LIB = $(GLOBAL_OBJ)/libglobal.a

XDB_LIB = $(DB_OBJ)/libdb.a

HDF_LIB = $(HDF_EOS)/lib/sgi/libhdfeos.a \

$(HDF_EOS)/lib/sgi/libGctp.a \

$(HDF_HOME)/lib/libmfhdf.a \

$(HDF_HOME)/lib/libdf.a \

$(HDF_HOME)/lib/libjpeg.a \

$(HDF_HOME)/lib/libz.a

DRAFT

LPS PRM 6–20

FS_LIB = $(FS_OBJ)/libfs.a

GLOBALLIBS = $(XGLOBAL_LIB) $(XDB_LIB) $(XGLOBAL_LIB) $(PROLDLIBS)
$(HDF_LIB) $(FS_LIB)

/***

#

LPS Global includes

#

#**/

HDF_INC = -I$(HDF_EOS)/include \

-I$(HDF_HOME)/include

GLOBALINCS = -I$(GLOBAL_INC) -I$(DB_INC) -
I$(ORACLE_HOME)/precomp/public $(HDF_INC)

/***

#

LPS Global dependencies

#

#**/

GLOBALDEPS = $(GLOBALLIBS)

/***

#

Local libraries

#

#**/

GLOBAL_LIB = $(XXXX_GLOBAL_OBJ)/libXXXXglobal.a

DB_LIB = $(XXXX_DB_OBJ)/libXXXXdb.a

LOCALLIBS = $(GLOBAL_LIB) $(DB_LIB) $(GLOBAL_LIB)

/***

#

Local includes

#

DRAFT

LPS PRM 6–21

#**/

LOCALINCS = -I$(XXXX_GLOBAL_INC) -I$(XXXX_DB_INC) -I$(XXXX_INC)

/***

#

LPS Global dependencies

#

#**/

LOCALDEPS = $(LOCALLIBS)

/***

#

Build dependencies

#

#**/

LOCAL_LDFLAGS= $(ORACLE_LDFLAGS)

LOCAL_LIBRARIES = $(LOCALLIBS) $(GLOBALLIBS)

DEPLIBS = $(LOCALDEPS) $(GLOBALDEPS)

INCLUDES = $(LOCALINCS) $(GLOBALINCS)

SYS_LIBRARIES = -lm -lsocket -lnsl

DEFINES = -DIRIX_VERSION $(EXTRA_DEFINES)

OBJDIR = $(XXXX_GLOBAL_OBJ)

/***

#

Create Library

#

#**/

LIBRARY = XXXXglobal

debug nodebug cclint optimize : lib$(LIBRARY).a

NormalProCTarget()

DRAFT

LPS PRM 6–22

NormalLibraryObjectRuleWithPC()

NormalLibraryTarget($(LIBRARY),$(OBJS))

InstallLibrary($(LIBRARY),$(OBJDIR))

DependTargetWithPC()

LintTarget()

Imakefile for generating executables/programs:

/***

#

Make Usage

#

#**/

help:

@ echo “Usage:”

@ echo “ lmake help”

@ echo “ to see this help message.”

@ echo “”

@ echo “ lmake [debug | nodebug | cclint | optimize]”

@ echo “ to create $(LIBRARY).”

@ echo “”

@ echo “ lmake lint”

@ echo “ to run lint on *.c and create llib-ldbp.ln.”

@ echo “”

@ echo “ lmake cadre”

@ echo “ to run reverse engineering bmdl tool on *.c files”

@ echo “”

@ echo “ lmake clean”

@ echo “ to remove *%, *~, *.lis, *.i, core, and dbp files.”

DRAFT

LPS PRM 6–23

@ echo “”

@ echo “ lmake cleaner”

@ echo “ to remove *%, *~, *.lis, *.i, core, dbp, *.o, *.ln, precompiled units,”

@ echo “ $(LIBRARY), *.d , and *.tcov.”

/***

#

Extract Objects and Sources

#

#**/

#define PassCDebugFlags ‘CDEBUGFLAGS=$(CDEBUGFLAGS)’

OBJS= $(SRCS:.c=.o) XCOMM all object files

SOURCESCPC= $(SOURCESPC:.pc=.c) XCOMM all pc units turned into c files

/***

*

* ORACLE directories

*

***/

ORACLE_LIB = $(ORACLE_HOME)/lib

ORACLE_PROC = $(ORACLE_HOME)/bin/proc

ORACLE_PRELIB= $(ORACLE_HOME)/precomp/lib

LD_LIBRARY_PATH = $(ORACLE_HOME)/lib

LIBRPC = $(ORACLE_LIB)/libncr.a

LIBSQLNET = $(ORACLE_LIB)/libsqlnet.a

NETLIBD = $(LIBSQLNET) $(LIBRPC) $(LIBSQLNET)

LIBGENERIC = $(ORACLE_LIB)/libgeneric.a

LIBCOMMON = $(ORACLE_LIB)/libcommon.a

LIBCLIENT = $(ORACLE_LIB)/libclient.a

DRAFT

LPS PRM 6–24

LIBORA = $(LIBCLIENT) $(LIBCOMMON) $(LIBGENERIC)

LIBEPC = $(ORACLE_LIB)/libepc.a

LIBCORE = $(ORACLE_LIB)/libcore3.a

LIBCV6 = $(ORACLE_LIB)/libc3v6.a

LIBNLSRTL = $(ORACLE_LIB)/libnlsrtl3.a

CORELIBD = $(LIBNLSRTL) $(LIBCV6) $(LIBCORE) $(LIBNLSRTL) $(LIBCORE)
$(LIBNLSRTL)

TTLIBD = $(NETLIBD) $(LIBORA) $(LIBSQLNET) $(LIBRPC) $(LIBSQLNET)
$(LIBORA) $(CORELIBD) $(LIBEPC)

LIBSQL = $(ORACLE_LIB)/libsql.a

LIBXA = $(ORACLE_LIB)/libxa.a

PROLDLIBS = $(LIBXA) $(LIBSQL) $(TTLIBD)

LIBMOD = $(ORACLE_PRELIB)/libmod.a

LIBPCC = $(ORACLE_PRELIB)/libpcc.a

LIBPGP = $(ORACLE_PRELIB)/libpgp.a

LIBPROC2 = $(ORACLE_PRELIB)/libproc2.a

EXTRALIB = $(LIBMOD) $(LIBPCC) $(LIBPGP) $(LIBPROC2)

ORACLELIBS = $(PROLDLIBS) $(EXTRALIB)

/***

*

* ORACLE precompile information

*

***/

PROFLAGS=ireclen=160 oreclen=160 select_error=no mode=ANSI code=ANSI_C
DBMS=V7

PCCFLAGS=include=$(PCCINC) ireclen=160 oreclen=160 select_error=no

DRAFT

LPS PRM 6–25

/***

#

LPS Global libraries

#

#**/

XGLOBAL_LIB = $(GLOBAL_OBJ)/libglobal.a

XDB_LIB = $(DB_OBJ)/libdb.a

HDF_LIB = $(HDF_EOS)/lib/sgi/libhdfeos.a \

$(HDF_EOS)/lib/sgi/libGctp.a \

$(HDF_HOME)/lib/libmfhdf.a \

$(HDF_HOME)/lib/libdf.a \

$(HDF_HOME)/lib/libjpeg.a \

$(HDF_HOME)/lib/libz.a

FS_LIB = $(FS_OBJ)/libfs.a

GLOBALLIBS = $(XGLOBAL_LIB) $(XDB_LIB) $(XGLOBAL_LIB) $(PROLDLIBS)
$(HDF_LIB) $(FS_LIB)

/***

#

LPS Global includes

#

#**/

HDF_INC = -I$(HDF_EOS)/include \

-I$(HDF_HOME)/include

GLOBALINCS = -I$(GLOBAL_INC) -I$(DB_INC) -
I$(ORACLE_HOME)/precomp/public $(HDF_INC)

/***

#

LPS Global dependencies

#

#**/

DRAFT

LPS PRM 6–26

GLOBALDEPS = $(GLOBALLIBS)

/***

#

Local libraries

#

#**/

GLOBAL_LIB = $(XXXX_GLOBAL_OBJ)/libXXXXglobal.a

DB_LIB = $(XXXX_DB_OBJ)/libXXXXdb.a

LOCALLIBS = $(GLOBAL_LIB) $(DB_LIB) $(GLOBAL_LIB)

/***

#

Local includes

#

#**/

LOCALINCS = -I$(XXXX_GLOBAL_INC) -I$(XXXX_DB_INC) -I$(XXXX_INC)

/***

#

LPS Global dependencies

#

#**/

LOCALDEPS = $(LOCALLIBS)

/***

#

Build dependencies

#

#**/

LOCAL_LDFLAGS= $(ORACLE_LDFLAGS)

LOCAL_LIBRARIES = $(LOCALLIBS) $(GLOBALLIBS)

DRAFT

LPS PRM 6–27

DEPLIBS = $(LOCALDEPS) $(GLOBALDEPS)

INCLUDES = $(LOCALINCS) $(GLOBALINCS)

SYS_LIBRARIES = -lm -lsocket -lnsl

DEFINES = -DIRIX_VERSION $(EXTRA_DEFINES)

BINDIR = $(XXXX_BIN)

/***

*

* Build Major Subsystem Target

*

***/

TARGET = rcvddn

debug nodebug cclint optimize purify purifynodebug purifyoptimize : $(TARGET)

NormalProCTarget()

To use the Imakefile templates, simply plug in the subsystem identifier into XXXX and specify
the LIBRARY or TARGET names.

6.4.1.1 lmake

Once a Makefile is generated under each source directory using Imake via Imakefile, lmake
provides a convenient way to run different options of make. Therefore, each source directory
must have a lmake script exist. A example of lmake script is as follows:

case $1 in

debug) EXTRA_DEFINES=‘-DDEBUG’

export EXTRA_DEFINES

make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -g”

;;

nodebug) make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn”

;;

cclint) make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -wlint”

;;

optimize) make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -O2”

;;

DRAFT

LPS PRM 6–28

gprof) make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -xpg -O2”

;;

tcov) make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -xa”

;;

purify) EXTRA_DEFINES=‘-DDEBUG’

export EXTRA_DEFINES

PURIFY=‘purify -first-only -chain-length=20 -suppression-file-names=“.pu

rify, .purify.irix”‘

export PURIFY

make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -g”

;;

purifynodebug) PURIFY=‘purify -first-only -chain-length=20 -suppression-file-nam

es=“.purify, .purify.irix”‘

export PURIFY

make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn”

;;

purifyoptimize) PURIFY=‘purify -first-only -chain-length=20 -suppression-file-na

mes=“.purify, .purify.irix”‘

export PURIFY

make -f Makefile $1 “CDEBUGFLAGS=-ansi -fullwarn -O2”

;;

lint) make -f Makefile $1

;;

clean) make -f Makefile $1

;;

cleaner) make -f Makefile $1

;;

install) make $1

;;

DRAFT

LPS PRM 6–29

help) make -f Makefile $1

;;

Makefile) make -f Makefile $1

;;

depend) make $1 “CDEBUGFLAGS=“

;;

*) echo “*** Invalid make option ***”

make -f Makefile help

;;

esac

6.4.1.2 Imakefile Usage

If the lmake file does not exist in current source directory, the following procedures are
recommended to generate the Makefile and compile the source files:

>xmkmf -------------> create Makefile

>make clean -------------> remove old files

>make depend -------------> search dependencies

>make -------------> create libraries or executables

>make install -------------> install libraries or executables into destination

>make lint -------------> create lint information

If the lmake script file exists in the source directory, simply run lmake and all the usages and
options will be displayed on the screen. However, if the Makefile does not exist under the source
directory in the beginning, the xmkmf command must be run to generate a Makefile before all of
the lmake options can be exercised.

6.4.2 ORACLE

6.4.2.1 Pro*C Precompiler

An ORACLE Pro*C precompiler is a programming tool that allows the developer to embed
Structured Query Language (SQL) or PL/SQL statements in a high-level source program
(including C).The precompiler accepts the source program written in C as input, translates the
embedded SQL statements into standard ORACLE runtime library calls, and generates a
modified source program that the developer can compile, link, and execute using a C compiler in
the usual way.

DRAFT

LPS PRM 6–30

To run the Pro*C precompiler to precompile the DBARs, the proc command with the following
options is used:

proc IRECLEN=160 ORECLEN=160 SELECT_ERROR=NO MODE=ANSI
CODE=ANSI_C DBMS=V7

IRECLEN=160 : Specifies the record length of the input file be 160

ORECLEN=160 : Specifies the record length of the output file be 160

SELECT_ERROR=NO : No error is generated when a single row select returns too many
rows than the host can accommodate.

MODE=ANSI : The program compiles fully with the ANSI SQL standard.

CODE=ANSI_C : Specifies to generate full function prototypes, which confirm to the ANSI
C standard, by the PRO*C precompiler.

DBMS=V7 : Specifies the ORACLE to follow the semantic and syntactic rules of
ORACLE7.

6.4.2.2 Forms 4.5 Files

Table 6–1 shows the file extensions for each type of Forms 4.5 module and storage format.

Table 6–1. File Extensions for Forms 4.5

Module Binary (Design) Executable Runfile

Form .fmb .fmx

Menu .mmb .mmx

The form/menu source file is created using the Forms graphical user interface (GUI) designer
executable, f45desm. It creates the binary file with the extension .fmb/.mmb. The executable
runfile (.fmx/.mmx) is created either using the designer or using the command line command.

To generate a form/menu executable from the Designer, select the File->Administration menu
->Generate of the Object Navigator.

DRAFT

LPS PRM 6–31

To generate a form executable from the command line, the following command is used:

f45genm module=form_name.fmb userid/passwd

To generate a menu executable from the command line, the following command is used:

f45genm module=menu_name userid/passwd module_type=menu

6.4.2.3 Reports 2.5 Files

Table 6–2 explains the ORACLE report file types:

Table 6–2. ORACLE Report Files

File Type Contents Format

.rdf Single report definition Binary executable, can be modified by
using Designer

.rep Single report, does not contain
comments or source code

Binary executable, cannot be
modified

The report binary executable file is created using the Forms GUI designer executable, r25desm.
It creates the binary file with the .rdf extension. The slimmer executable runfile (.rep) is created
either using the designer or using the command line command.

To generate a .rep file from the Report Designer, select the File->Generate menu of the Report
Designer.

To generate a .rep file from the command line, the following command is used:

r25convm userid/passwd source=report_name stype=rdffile dest=target_report_file_
name dtype=repfile overwrite=yes batch=yes

6.4.3 Possible Upgrade Problems

6.4.3.1 Operating System Dependencies

The LPS may run into problems when the operating system is upgraded to the new version. The
current operating system in use is SGI IRIX 6.2. Pay special attention to those units that contain
the nonportable codes when upgrading the operating system.

6.4.3.2 ORACLE DBMS Dependencies

The LPS database may run into problems when the ORACLE DBMS is upgraded. As discussed
in Section 6.4.1, the ORACLE directories and precompile information in the Imakefile may be
necessary to change. The LPS DBMS currently uses ORACLE 7.3.2.

6.4.3.3 HDF/HDF-EOS Dependencies

Because the software of HDF/HDF-EOS depends on the running operating system, there may be
a problem using it if the operating system is upgraded. The LPS currently uses HDF 4.0r2.

DRAFT

LPS PRM 7–1

Section 7. Testing LPS Software

7.1 Simulators
7.1.1 ECS Simulator

To test the control messages between the LDTS and ECS, an ECS_simulator is built based on the
Interface Control Document (ICD) Between ECS and the Landsat 7 System. It is enhanced from
DDF Simulator, Mission Operations and Systems Development Division (GSFC). The
ECS_simulator contains 10 simulations available, but only the ninth and tenth are of interest.
Because the simulator is GOTS software, contact GSFC for support if software changes are
needed.

ECS_simulator consists of two programs:

1. ecs_sim – the actual simulator that talks to the remote host

2. ecs_ui – the user interface that communicates with ecs_sim

The programs run in separate windows on an X terminal. User commands are passed from ecs_ui
to ecs_sim in a command file. Socket message files (binary or text) are passed between the
programs and are kept for later analysis/use by the user.

Before making any software change to ECS_simulator, the following references are required
reading:

• ICD Between ECS and the Landsat 7 System

• README.users_guides under ECS source directories

• README.deliv_ltr, included in delivery with source code

• make_ecs (the make file for both programs), included in delivery with source code (The
prolog provides information on the directory configuration and is required for building
the executables.)

7.1.2 Major Frame Processing and Image Data Processing Simulator for Testing
Payload Correction Data

PCDS testing is much simplified if a simulated environment is used. The simulated environment
runs faster than the full mac_startl0r and is more easily controlled. Several custom test tools have
been developed for PCDS testing. These tools include programs for simulating the PCD
program’s runtime environment and for manipulating test data. The test tools are unsupported
and indifferently documented. They are located in the tools directory.

7.1.2.1 mac – simulates top-level processing functions of mac_startl0r

This program creates the requisite shared-memory segments and the pcd-to-idp FIFO and
invokes the mfp, pcd, and idp programs (all are assumed to reside in the current working
directory), waits for them to complete, and writes their return status to stdout.

DRAFT

LPS PRM 7–2

mac is invoked as follows:

example% mac file-name contact-sequence-ID file-version-number

where file-name is the name of a file containing unpacked PCD cycles, contact-sequence-ID is
the contact sequence identifier associated with the contact in the LPS database, and file-version-
number is any valid file version number. The latter two arguments are passed to the pcd program.

CAUTION

mac sometimes hangs indefinitely whenever a child process exits
with a failure exit code. In this case, killing mac with a SIGINT
will shut the process down, but shared memories and FIFOs will
not have been deallocated. In this case, use the ipc_cleanup utility
to deallocate shared resources.

The following source files are compiled to produce the mac executable.

• mac_Main – main function

• mac_processControl – functions to start and wait for child processes to exit

• mac_processControl.h – contains prototypes for mac_processControl functions and
#include’s lps_types.h

7.1.2.2 mfp – simulates the mfp program

mfp reads a file of unpacked PCD and transmits it to pcd in the correct format. mfp sends
appropriate end-of-subinterval and end-of-contact messages at the end of the run. When invoked,
mfp main issues a prompt and waits for user input before continuing. This allows attachment of a
debugger to the pcd program before it receives any input.

WARNING

A bug causes mfp to reprompt forever unless the first character
typed is “y.”

mfp’s output is determined by the value of variables and constants set at compile time in the
following way. The scenes variable is set to the number of scenes to be output. For each scene,
mfp generates several major frames equal to MAJOR_FRAMES_PER_SCENE (a static constant
int variable). For each major frame, mfp reads 4 * MAX_VCDUS_PER_ETM_MAJ_FR
(another static constant int variable) bytes from the PCD input file. mfp exits with a fatal error if
the input file contains fewer than the requisite bytes. mfp does not use any PCD in the input file
beyond the requisite bytes.

Several versions of this program simulate different interesting test conditions:

• mfp.old – sends simulated Enhanced Thematic Mapper (ETM+) major frames to the
idp simulator as well as PCD to the pcd program

DRAFT

LPS PRM 7–3

• mfp.normal – sends only PCD to the pcd program with an end-of-contact message to
the idp simulator

• mfp.skip20 – discards bytes representing the contents of every twentieth CADU to
simulate missing virtual channel data units (VCDUs), and sets the missing VCDU count
field in the lpsPCDInfoStruct structure passed to pcd

• mfp.2si – sends two subintervals to pcd

NOTE

To use one or the other of these executables, the appropriate
executable should be copied to a file named “mfp.”

The following source files are compiled to produce the mfp executable:

• mfp_Main – main function for all versions of mfp

• mfp_Main.nowait – alternative version of the main function that does not wait for pcd
to start up

• mfp_datagen.h – prototypes for data generating functions; this file is used by all
versions of mfp

• mfp_datagen.normal – data generating functions for mfp.normal

• mfp_datagen.c.original – data generating functions for mfp.old

• mfp_datagen.skip20 – data generating functions for mfp.skip20

• mfp_datagen.2si – data generating functions for mfp.2si

7.1.2.3 idp – simulates the idp program

idp reads the pcd-to-idp FIFO and writes the contents of each message to stdout. There are two
versions of idp:

• idp – does not expect shared-memory segments to be provided by the mfp simulator;
use with all versions of mfp except mfp.old

• idp.old – reads both shared-memory segments from the mfp simulator and the pcd
FIFO (NOTE: The program does not read the pcd FIFO until the end of the subinterval
and thereafter does not read the mfp shared-memory interface until all messages from
pcd for the subinterval have been received.)

The following source files are compiled to produce idp executables:

• idp_Main.c – compile to produce idp

• idp_Main.c.old – compile to produce idp.old

DRAFT

LPS PRM 7–4

7.1.2.4 Other Tools

Several other unsupported but useful test tools are provided for PCDS testing:

• bitflip – C program (source is bitflip.c) that reads a specified file of unpacked PCD and
writes a file containing the contents of the input file with 1 bit flip introduced into each
PCD word triplet. The bit flip occurs in bit 0 of the first word in the first triplet and then
proceeds bitwise through each word. Invocation method is “bitflip file.” bitflip creates
the output file “file.errors” in the current working directory.

• bskip – C program (source is bskip.c) that copies a binary file, skipping a specified
number of bytes at the beginning and replacing them with the same number binary zeros
at the end. bskip is useful for creating truncated versions of files of unpacked PCD that
can still be handled by mfp. The invocation method is “bskip file number-of-bytes.”
bskip creates the output file “file.bskip” in the current working directory.

• bzero – C program (source is bzero.c) that creates a file containing a specified number
of binary zero bytes. The invocation method is “bzero file number-of-0s.” bzero creates
the output file “file” in the current working directory.

• create_test_tables.sql – SQL script that creates the set of LPS database tables used by
the pcd program without constraints. This script is useful when testing in a shared
environment because it provides private versions of shared database tables. The script
also allows the developer to remove database constraints from tables when the
constraints are impeding debugging. Invoke the script in SQL*Plus by typing “start
create_test_tables.”

• drop.sql – SQL script that drops the set of tables created by create_test_tables.sql.
Invoke the script in SQL*Plus by typing “start drop.”

• dtots – C program (source is dtots.c) that accepts a real number interpreted as the time
in seconds since January 1, 1993, and produces a string representing the time. The real
number time format is used extensively in pcd, and this utility is useful when attempting
to interpret a time in that format. The invocation method is “dtots time-as-real-number.”
The string is written to stdout.

• ephem – C program (source is ephem.c) that extracts and displays attitude and
ephemeris values from a file of packed PCD. To produce a file of packed PCD from a
file of unpacked PCD, type the following.

example% fmtpcd unpacked-file-name | awk ‘{print $2}’ > packed-file-name

See the fmtpcd description for more information.

CAUTION

ephem outputs incorrect latitude and longitude values for each
attitude and ephemeris. Ignore them.

DRAFT

LPS PRM 7–5

• fmtpcd – C program (source is fmtpcd.c) that reads a specified file and outputs a
formatted hex dump of the unpacked PCD cycles in the file. Each cycle appears on a
separate line. The invocation method is “fmtpcd file.” The hex dump is written to
stdout.

• getpcd – C program (source is getpcd.c) that extracts unpacked PCD 4-tuples from a
raw wideband data set and writes them to a file. getpcd only works if the first
synchronization pattern begins at bit 0 of the first byte and there are no bit slips. The
invocation method is “getpcd file.” The unpacked PCD is written to a file named
file.pcd in the current working directory.

• gha – C program (source is gha.c) that computes a Greenwich hour angle (GHA) given
a UT1 time. The invocation method is “gha YYYY DDD HH:MM:SS.xxxxx.” The GHA
is written to stdout.

• ipc_cleanup – shell script that deletes all shared-memory segments, FIFOs, and
semaphores allocated to the invoker’s user ID

• mag – C program (source is mag.c) that computes a vector magnitude. The invocation
method is “mag X Y Z.” The magnitude is written to stdout.

• mjd – C program (source is mjd.c) that computes a modified Julian day value given a
year and Julian day. The invocation method is “mjd YYYY DDD .” The modified Julian
day is written to stdout.

• tstod – C program (source is tstod.c) that computes a time represented as number of
seconds since January 1, 1993. The invocation method is “tstod YYYY DDD
HH:MM:SS.xxxxx” The computed time is written to stdout.

7.2 Viewing Shared Memory
7.2.1 RDPS-to-MFPS

Two concurrent sessions of CaseVisionDebugger were used to view the shared memory between
the RDPS and the MFPS: one session for the MFPS and the other for the RDPS.

7.2.2 MFPS-to-PCDS

A PCDS simulator was used that logged the main items of data going into the shared memory in
a file. For a detailed view of shared memory between the PCDS and the MFPS, two concurrent
sessions of CaseVisionDebugger were used: one session for the MFPS and the other for the
PCDS.

7.2.3 MFPS-to-IDPS

An IDPS simulator was used that logged the main items of data going into the shared memory in
a file. For a detailed view of shared memory between the IDPS and the MFPS, two concurrent
sessions of CaseVisionDebugger were used: one session for the MFPS and the other for the
IDPS.

DRAFT

LPS PRM 7–6

7.3 COTS and GOTS
7.3.1 ORACLE

7.3.1.1 Referential Integrity Constraint Considerations

ORACLE supports the use of foreign key integrity constraints to enforce referential data
integrity. The inter-relationship between the LPS database tables (attributes) is as follows:

• Parent tables

– RDC_ACCT (CONTACT_SEQUENCE_ID)

– PROCESSING_VERSION_INFO (CONTACT_SEQUENCE_ID, FILE_
VERSION_NUMBER)

– SUB_INTV (CONTACT_SEQUENCE_ID, FILE_VERSION_NUMBER, SUB_
INTV_SEQUENCE_ID)

Among these parent tables, PROCESSING_VERSION_INFO
(CONTACT_SEQUENCE_ID) references RDC_ACCT (CONTACT_
SEQUENCE_ID). SUB_INTV (CONTACT_SEQUENCE_ID, FILE_VERSION_
NUMBER) references PROCESSING_VERSION_INFO (CONTACT_SEQUENCE_
ID, FILE_VERSION_NUMBER).

• Dependent tables (attributes) referencing SUB_INTV (SUB_INTV_SEQUENCE_ID)

– BANDS_PRESENT (SUB_INTV_SEQUENCE_ID)

– BAND_GAIN_STATES (SUB_INTV_SEQUENCE_ID)

– IDP_ACCT (SUB_INTV_SEQUENCE_ID)

– LDT_FILE_GROUP_INFO (SUB_INTV_SEQUENCE_ID)

– LPS_FILE_INFO (SUB_INTV_SEQUENCE_ID)

– MFP_ACCT (SUB_INTV_SEQUENCE_ID)

– MFP_MJF_ACCT (SUB_INTV_SEQUENCE_ID)

– PCD_ACCT (SUB_INTV_SEQUENCE_ID)

– PCD_MJF_ACCT (SUB_INTV_SEQUENCE_ID)

– PCD_SCENE_ACCT (SUB_INTV_SEQUENCE_ID)

• Dependent tables (attributes) referencing PROCESSING_VERSION_INFO
(CONTACT_SEQUENCE_ID, FILE_VERSION_NUMBER)

– LDT_DAN_INFO (CONTACT_SEQUENCE_ID, FILE_VERSION_NUMBER)

– LDT_FILE_SET_INFO (CONTACT_SEQUENCE_ID, FILE_VERSION_
NUMBER)

DRAFT

LPS PRM 7–7

– RDP_ACCT (CONTACT_SEQUENCE_ID, FILE_VERSION_NUMBER)

When running a test by interactively entering records into the tables using SQL*Plus, make sure
that the child table record’s foreign key value exists as a referenced key value in the parent table
record.

The foreign key constraints defined in child tables in the LPS database are set up with the “on
delete cascade” option. It allows deletion of referenced key values in the parent table that have
dependent records and causes ORACLE to automatically delete dependent records from the child
table to maintain the referential integrity.

For example,

• SUV_INTV table has a record with SUB_INTV_SEQUENCE_ID = 10.

• MFP_ACCT table has a record with SUB_INTV_SEQUENCE_ID = 10.

• PCD_ACCT table has a record with SUB_INTV_SEQUENCE_ID = 10.

The “SQL> delete from SUV_INTV where SUB_INTV_SEQUENCE_ID = 10” command will
delete records with SUB_INTV_SEQUENCE_ID = 10 from all three tables.

7.3.1.2 Other Integrity Constraints

In addition to the referential integrity constraint, three more constraint types are defined to
maintain the LPS data integrity: Not Null, Primary Key, and Check. The constraints naming
convention is as follows:

• pk_FullTableName – primary key constraint

• fk_FullTableName – foreign key constraint

• ck_TableNameAcronym_AttributeNameAbbreviation – check constraint

• nn_TableNameAcronym_AttributeNameAbbreviation – not null constraint

For example, the BANDS_PRESENT table with three attributes has the following constraints.
All key constraints are indicated at the SUB_INTV_SEQUENCE_ID attribute:

BANDS_PRESENT (SUB_INTV_SEQUENCE_ID, PCD_CYCLE_TIME, BAND_
PRESENT)

pk_bands_present for primary key constraint

fk_bands_present for foreign key constraint referencing SUB_INTV(SUB_INTV_
SEQUENCE_ID)

ck_bp_sub_intv_seq_id for check constraint

check (0 < SUB_INTV_SEQUENCE_ID)

nn_bp_sub_intv_seq_id for not null constraint

DRAFT

LPS PRM 7–8

While running the LPS processes, if a constraint violation condition occurs, the developer can
find out its full information by retrieving it from the data dictionary ALL_CONSTRAINTS table
keying on the constraint name under SQL*Plus.

For example, if the error message logged in the LPS Journal is “ORA-02290: check constraint
(APPLDBA.CK_BP_SUB_INTV_SEQ_ID) violated.”, the following command interactively
entered using SQL*Plus will return all the information about the check constraint violation.

SQL> select * from ALL_CONSTRAINTS where constraint_name =
‘CK_BP_SUB_INTV_SEQ_ID’;

7.3.1.3 Others

To run a test, it is sometimes necessary to manipulate data interactively using SQL*Plus before
or during running a test process. In such case, make sure that the changes be committed for the
data changes to be accessible by the test process by issuing the “SQL> commit;” command.

7.3.2 EOSView

EOSView is an interactive X Window-based tool developed by the ECS project for viewing
HDF-EOS files. It differs from other HDF compatible tools in that it can interpret the complex
HDF-EOS specific structures such as swaths and geolocation tables. It is capable of displaying
data in numeric form and rendering images. Data is displayed in scrollable windows.

7.3.3 vshow

vshow is a command line-based utility provided by NCSA for dumping the contents of HDF files
in ASCII format. This utility is not sophisticated, but it works. It cannot interpret the HDF-EOS
structures; however, it does a fair job of displaying their content based on the lower level HDF
structures from which they are built. It does not render images. vshow is useful for examining
data with which EOSView has difficulty, such as characters. NCSA provides it along with the
HDF library.

7.3.4 LinkWinds

LinkWinds is a sophisticated GUI-based tool developed at the Jet Propulsion Laboratory (JPL)
for viewing and evaluating scientific data and that can read HDF files as input. It cannot interpret
HDF-EOS structures, but is able to read and display the image data contained in an LPS band
file. This tool incorporates many advanced data analysis features and is useful to a user who
wishes to not only view the contents of an LPS swath, but also to study it. LinkWinds is
available on several UNIX-based platforms. The SGI/IRIX version works well, but will only run
with SGI workstations because it uses SGI-specific firmware. It does not work with a generic X
terminal. LinkWinds is available free of charge from JPL. Visit their Web site
(http://linkwinds.jpl.nasa.gov/) for details.

7.3.5 gtedit

gtedit is a Generic Telemetry Simulator utility used to edit (review/modify) the telemetry data. It
is invoked using the following command:

gtedit [-h] [-p path] [-s | -v | -b blocksize] filename

DRAFT

LPS PRM 7–9

where

filename = data file to edit

-b blocksize = length in bytes of fixed length data units in the data file

- p path = alternate path for a temporary file that is used by the gtedit (In absence of this
flag, /tmp is used for the purpose.)

-v = data file contains variable length data units

-s = data file contains data unit summaries

-h = Display help screen

For example, the gtedit -b 1040 /LPS/b3/mfps/data/97-123-10:12:14.cpt command is used to edit
the /LPS/b3/mfps/data/97-123-10:12:14.cpt data file, which contains data units of 1040 bytes
each.

Once gtedit displays the data file, one block of data at a time, edit commands are used to edit the
data file. Most edit commands are similar to the vi editor commands. The z command is used to
toggle between hex and binary (bits) display. The i command is used to enter edit mode to edit
either a hex digit (a nibble) or a bit. <Esc> is used to exit edit mode. /xx is used to search for hex
byte xx. :w and :q are used to save the data file and to quit gtedit, respectively. -h is used to show
other edit commands.

DRAFT

LPS PRM 8–1

Section 8. Design Decisions

8.1 General
8.1.1 Interface Consideration

8.1.1.1 FIFOs

The LPS project uses the UNIX Message Queues IPC facilities to provide low bandwidth,
controlled communication among it subsystems.

When LPS is brought up, the MACS invokes lps_RsrcAlloc() to start creating IPC resources. It
creates an LPS shared-memory resource control shared-memory segment and an LPS FIFO
control shared-memory segment. These two shared-memory segments are used to manage the
LPS shared-memory resources and the LPS FIFO resources. They also contain the resource
access information for LPS subsystems. When the control shared-memory segments have been
created, lps_RsrcAlloc() invokes lps_RsrcAllocFIFO() to create LPS FIFO queues.

When L0R data processing is completed or an error is encountered at L0R data processing, the
MACS invokes lps_RsrcDealloc() to remove the LPS FIFO queues. This will guarantee that no
unwanted FIFO queues will be left in the system.

Subsystems or processes requiring access to the LPS FIFO queues call lps_FIFOOpen() to attach
to the LPS FIFO queues created by the MACS. The subsystems or processes can then call
lps_FIFOSend() and lps_FIFOReceive() to exchange information. In the meantime, the
subsystems or processes can specify whether or not to wait when reading or writing from/to the
LPS FIFO queues. After data processing is done or an error encountered, the subsystems or
processes call lps_FIFOClose() to detach themselves from LPS FIFO queues (Figure 8–1).

8.1.1.2 Shared Memory

LPS project uses the UNIX System V Shared Memory IPC facilities to provide high-bandwidth,
high-volume controlled communication among it subsystems. The semaphore is developed on
top of the shared memory to control the uses of shared memory.

As described in Section 8.1.1.1, LPS shared-memory segments are created by the MACS at the
start of LPS L0R processing. When LPS is brought up, the MACS invokes lps_RsrcAlloc() to
start creating IPC resources. It creates an LPS shared-memory resource control shared-memory
segment and an LPS FIFO control shared-memory segment. These two shared-memory segments
are used to manage the LPS shared-memory resources and the LPS FIFO resources. They also
contain the resource access information for LPS subsystems. When the control shared-memory
segments have been created, lps_RsrcAlloc() invokes lps_RsrcAllocShm() to create LPS shared-
memory resources. The MACS invokes lps_RsrcDealloc() to remove the LPS shared memories
from the system at the completion of L0R data processing or an error is encountered at L0R data
processing.

DRAFT

LPS PRM 8–2

10037638W-002

RsrcDealloc RsrcAlloc RsrcAllocFIFO

MACS

FIFO 1 FIFO nLPS Globals
Setup

LPS Subsystem
Operations

FIFOClose FIFO
Receive/Send

FIFOOpen

IDPS PCDS

Figure 8–1. LPS FIFO Operations

All LPS IPC resources will be assigned unique keys that are constant and are defined in the
global libraries. The MACS uses the keys to get the effective keys, which are then used to create
or remove LPS IPC resources. The other subsystems or processes provide the assigned keys to
the global libraries, and the global libraries map out the effective keys for the subsystems to gain
access to LPS IPC resources (Figure 8–2).

Once the shared resource control shared-memory segment is created, lps_RsrcAllocShm()
invokes lps_ShmCreate() to create the shared-memory segments used in LPS. Based on the
specific number of shared memories used by the subsystems, the number of blocks in each
shared memory, and the block size needed by the subsystems, lps_ShmCreate() creates the
shared-memory segments. After the shared-memory segments are successfully created, a
semaphore set is created accordingly for each shared-memory segment and will be used to
control and synchronize the access of shared-memory blocks. The created shared-memory
segments are then divided into a number of fixed-size blocks and the block addresses, and
associated shared-memory segment and information are stored in the shared resource control
information table. Initially, all the shared-memory blocks are initialized as free (write) blocks in
the block pool. The subsystem calls lps_ShmGetWrBlk() to retrieve a free block for writing and
calls lps_ShmPutWrBlk() to put the written block into the active (read) block pool after it
finishes the write block.

Likewise, when a subsystem needs to retrieve information from the active (read) block pool, it
calls lps_ShmGetRdBlk() to obtain a read block and calls lps_ShmPutRdBlk() to return the read
block back into the free block pool. Low-level global library functions (lps_ShmAddListTail(),
lps_ShmRemListTail(), and lps_ShmRemListHead) are used to insert and remove the shared-
memory blocks in the pools. The blocks in the free and active pools are managed in a first-in-
last-out (FILO) pattern. On top of the FILO control mechanism, the blocks are also guarded by

DRAFT

LPS PRM 8–3

the semaphores to prevent the racing condition among the subsystems. The semaphores are also
used to provide the subsystems with the option of whether or not to wait for a block to become
available.

10037638W-003

RsrcDealloc RsrcAlloc RsrcAllocShm

MACS

Shm 1 Shm n

LPS Globals
Setup

LPS Subsystem
Operations ShmClose ShmGetRd/WrBlk,

ShmPutRd/WrBlk
ShmOpen

ShmRemove ShmCreate

RsrcCntrllnfo

sema 1 sema 2

RDPS MFPS

Figure 8–2. LPS Shared-Memory Operations

8.1.1.3 Information Passed Via the Database

Type of Information Passed

The LPS database management system (DBMS) is used to store LPS status and accounting
information, image data Q&A information, and metadata information. In addition, the LPS
application uses database tables for IPC mechanisms among subsystems to reduce the coupling
of LPS subsystems.

Database Commits

Each subsystem process connects (lps_db_Connect) to the LPS database to retrieve, insert,
delete, and update data. When it disconnects [lps_db_Disconnect (LPS_COMMIT) or
lps_db_Disconnect (LPS_NOCOMMIT)] from the database, it should pass COMMIT as an
argument to lps_db_Disconnect to end the current transaction and to make permanent all changes
performed in the transaction.

DRAFT

LPS PRM 8–4

When it is necessary to make an intermediary commit without disconnecting from the database,
the lps_db_Commit function can be used.

8.1.2 Rollback with L0R Failure

When the L0R processing of data of a contact period fails, all the records generated and inserted
into the LPS database during the L0R processing are to be rolled back (mac_db_RollbackL0R).

ORACLE supports the use of foreign key integrity constraints to enforce referential data
integrity. The foreign key constraints defined in child tables in the LPS database are all set up
with the “on delete cascade” option. Therefore, deleting the record in the
Processing_Version_Info parent table triggers automatic deletion of dependent records in the
child tables that reference the deleted record in the parent table.

The Process_Id table is an independent table that does not depend on any other table. The L0R
processing indicator record in the Process_Id table is deleted explicitly by
mac_db_RollbackL0R.

8.1.3 Error-Handling Philosophy

The LPS project relies on UNIX system facilities to handle the system errors and log error
messages.

8.1.3.1 System Signal Handling

The LPS project uses the Berkeley Software Distribution (BSD) UNIX signal facilities to catch
the error signal generated by the system when it encounters any system violations. LPS
subsystems call the lps_ProcessInit global routine to set up signal handling.

8.1.3.2 Error Logging

The LPS project uses the basic UNIX system services to provide status and error reporting. LPS
subsystems call the lps_LogMessage()global routine to log the status or error messages to the
LPS Journal error log file using the UNIX syslog function. This function also provides the option
to log the messages to the standard error file for debugging purposes.

8.1.4 Database Access Routines

DBARs retrieve, insert, delete, and update records in the database during L0R processing. There
are LPS systemwide global database access routines prefixed with lps_db_ and subsystem-level
database access routines prefixed with xxx_db_, where xxx denotes a subsystem (RDCS, RDPS,
MFPS, PCDS, IDPS, LDTS, or MACS).

DBARs are written using the ORACLE7 Pro*C by embedding SQL or PL/SQL in application
programs written in C.

8.2 Management and Control Subsystem
The MACS is responsible for the system-level control and monitoring of LPS devices and
processes. It provides the interface medium between LPS and the operator. MACS main
functions include

DRAFT

LPS PRM 8–5

• Generating LPS metadata files and associated accounting files

• Starting and stopping manual or automatic data capture

• Starting and stopping L0R processing

• Starting and stopping archival to tape

• Ingesting contact schedules from the Mission Operations Center (MOC)

• Ingesting calibration parameter files from the Image Assessment System (IAS)

The MACS consists of 12 processes that all operate independently. Each process is started by the
operator from the GUI from a command line at the UNIX shell prompt or by another process. To
keep each process simple, the LPS database is used as a means of IPC. All access to the database
is through DBARs. This separates the functional processing and the database data processing.

8.3 Raw Data Capture Subsystem
8.3.1 rdc_Capture

Mizar Versus HPDI

The biggest issue with rdc_Capture, and rdc_Transmit, is the underlying receive and transmit
hardware. Many of the software design decisions were driven by the choice of hardware and the
device driver implementation.

The initial hardware device for capture was a Mizar implementation. This implementation
provided LPS with a COTS board that provided for data receipt at 75 Mbps, but required a
custom serial-to-parallel interface card, and could only transmit data at approximately 30 Mbps.

In mid-1996, an HPDI hardware device was investigated for data capture and transmission. Its
advantages were that the board included a COTS serial-to-parallel interface and it transmitted
data at above 75 Mbps. This change in the hardware device, however, had ramifications on the
software.

Due to Mizar limitations, the device could not be preempted during data receipt. In fact, if the
device was preempted, the system had a tendency to panic and reboot. Therefore, rdc_Capture
was initially designed and coded without the use of UNIX signals to handle process shutdown.
Instead, an ASCII file was used to communicate shutdown directives.

When the capture device switched to the HPDI implementation, the preempting limitation no
longer existed. This allowed a move to UNIX signal communications, which had several
advantages:

1. Because the ASCII file no longer existed, the capture process and its communication
mechanism were self contained. This avoided the need for special code to handle disk
space limitations and file I/O issues.

2. SIGALRM could be used to timeout the process at scheduled stop, rather than having to
poll the system time. This eliminated a spawned RDCS executable that performed the
polling, which saved some performance.

DRAFT

LPS PRM 8–6

3. Preparing a signal handler for termination communication allowed use of an LPS global
function (lps_ProcessInit) for process initialization. This allowed the RDCS capture and
transmit functions to initialize identically to the other LPS processes.

4. Preparing the signal handler for termination also provided for software handling of
additional problems such as segmentation violations, bus errors, etc.

The device driver for the Mizar and HPDI devices were written by SGI. The device driver
interface software was written by LPS team members. To keep these functions isolated from the
rest of the RDCS capture and transmit software, they were all placed into a single C module
(rdc_DeviceFunctions.c) for ease of software maintenance.

A final limitation existed within the HPDI device itself. The device did not work properly if the
Versa-Module European (VME) board was not reset prior to a data capture or transmit. Due to
this limitation, source was obtained from SGI to perform this reset. The resulting executable is
called rdc_vmereset. This executable is forked by rdc_Capture and rdc_Transmit prior to
enabling the device. It is important to note that SGI does not support this VME reset software.

Input

The only input to the rdc_Capture process (other than the raw wideband data) is the process
(command line) arguments. The format of the process arguments are, for the most part, legacy
formats. In fact, several have been removed or changed since LPS Build 1.

• -l Capture-Source – This option used to be named LGS-Channel-ID, which explains
the ‘l’ for the option. The name was changed because the capture source was not always
going to be the Landsat Ground Station (LGS). Unfortunately, the option was not
changed because the letter ‘c’ was taken by other LPS processes to mean Contact-ID, so
the ‘l’ remains.

 In addition, Capture-Source used to be a required argument. Because it was decided that
terminating the process because a capture source was not provided seemed unnecessary,
“NULL” capture sources were allowed. This change affected the LPS global database
access routine lps_db_GetRDCInfo.

• -i – This option specifies that the process is to isolate and restrict a processor and run
with the highest possible nondegrading priority. This feature was designed into the
rdc_Capture from the software requirements phase. How the contention of system
resources would affect the performance of the data capture was not known. At this
point, it is fairly sure that this option will not be required, but, nonetheless, it is still
available.

 It is important to note that the rdc_Capture executable must be owned by “root,” and
must have the Set Group ID set for this option to succeed. For example, from the UNIX
prompt, “ls -l” would result in

-r-sr-sr-x 1 root group ###### May 31 12:00 rdc_Capture

 Note the “s” in the permissions.

DRAFT

LPS PRM 8–7

• -s – This option suspends all currently running L0R processes. This feature was
designed into rdc_Capture for the same reasons as the -i option. At this point, it is fairly
sure that this option will not be required, but, nonetheless, it is still available.

 It is important to note that the mechanism for accomplishing this suspension is through
the SIGSTOP/SIGCONT UNIX signals. A couple of caveats exist for this to work.
First, the process that initiates L0R processing must be called mac_startl0r, and this
process must initialize itself as a process group leader [see setpgid(2)]. Second, the
rdc_Capture executable must be owned by “root,” and must have the Set Group ID set
for this option to succeed. See the -i option for an example.

• -b Start-Date-&-Time – This option currently has no functional effect on the RDCS
Capture process. It is simply used to place into the RDC_ACCT database table so that
the LPS maintains a record of the scheduled start time for the data capture contact
period. This option is, probably, only going to be used by the MACS Automatic Capture
process to associate the scheduled start time with the value from the SCHEDULES
database table.

 The format of the Start-Date-&-Time argument was defined during the software
requirements phase and has never changed.

• -e Stop-Date-&-Time – This option has two purposes. First, similar to the -b option, it
serves as a link to the SCHEDULES database table to provide a record of the scheduled
stop time. Second, and more importantly, it is used to calculate the duration of the data
capture. If the Stop-Date-&-Time argument cannot be used to calculate the duration, a
default value of 840 seconds is used. 840 is the worst-case duration (0’ to 0’) of a
Landsat 7 contact period (14 minutes). If a longer duration is needed, a valid Stop-Date-
&-Time will supersede the default value.

The format of Stop-Date-&-Time was defined during the software requirements phase
and never changed. A duration in seconds was considered, but never implemented.
However, a duration in seconds would probably be more intuitive.

Output

The RDCS primary output is the raw wideband data file. The name is currently specified as YY-
DDD-HH:MM:SS_String-ID.data, where YY-DDD-HH:MM:SS is the actual data capture start
time and String-ID is the host name on which data capture is executed. This filename definition
was defined in such a manner that it would always be unique. Even the case is covered where a
string went down and the file was moved to another string for L0R processing.

rdc_Capture has a derived requirement to be able to run unimpeded with or without access to the
LPS database. This requirement drove the creation of an additional output file called the RDCS
Accounting file. The name is currently specified as YY-DDD-HH:MM:SS_String-ID.acct, where
YY-DDD-HH:MM:SS is the actual data capture start time and String-ID is the host name on
which data capture is executed.

The RDCS Accounting file is an ASCII file containing, essentially, mirrored information to that
contained within the RDC_ACCT database table. Because the capture software is the sole owner

DRAFT

LPS PRM 8–8

of the RDC_ACCT database table, the capture software had to have a method for retaining the
relevant fields if the database was not available.

Notes

The original raw wideband filename had a .cpt extension. This extension did not adequately
describe the file, so it was changed to .data. This change should not have had any effect on the
LPS software because the filename format was never defined as an interface. L0R processing
was intended to use as input whatever filename was placed into the RDC_ACCT database table.
Unfortunately, miscommunication occurred, and the LPS global lps_ValidateRDCOutfileName
was written to validate the RDCS filename prior to processing raw wideband data to L0R. This
unit should have never been written and should eventually be removed. This unit has since been
modified to ignore the filename extension as a workaround.

8.3.2 rdc_DeleteFiles

rdc_DeleteFiles is simply an encapsulation of the rdc_db_DeleteRDCFiles RDCS global unit.
This process encapsulates the function to allow the raw wideband data files to be deleted from
the command line. All raw wideband data deletion is handled by rdc_db_DeleteRDCFiles. This
was done because the raw wideband data file deletion had to be performed by the rdc_Save
process, and had to be forked/executed by the MACS.

Input

The only input to rdc_DeleteFiles is the process (command line) arguments. The format of the
process arguments have been slightly modified since LPS Build 1, but are essentially unchanged.

• -f filename – This option specifies the complete path and filename of the raw wideband
data file to be deleted. This filename is used as the database key into the RDC_ACCT
table to make appropriate table updates pending data deletion. In addition, this filename
is used to identify the raw wideband data file, as well as the raw wideband data
accounting file requiring deletion.

• -u – This option is optional. It specifies an unconditional delete of the raw wideband
data files. If provided, rdc_DeleteFiles will not check the L0R processing state of the
raw wideband data file.

Output

On successful deletion, this process should have deleted the raw wideband data files (if L0R
processed or -u option provided) and updated the archival and online state of the raw wideband
data.

Notes

rdc_DeleteFiles currently does not call rdc_Init to perform initialization. If rdc_Init were used,
this process would be more consistent with the other RDCS processes and unnecessary source
code could be removed, e.g., the call to lps_db_Connect and getopt(1) loop.

DRAFT

LPS PRM 8–9

rdc_DeleteFiles should add more robust command line argument validation. Currently, the only
check made is argc < 2 produces an error. Therefore, the rdc_DeleteFiles -u call is allowed,
despite requiring the -f filename option.

rdc_DeleteFiles should add a call to rdc_LogShutdownMessage(LPS_SUCCESS) prior to
exiting with a successful status. In addition, this process should replace the call to
LPS_LOGMESSAGE with a call to rdc_LogShutdownMessage(LPS_FAILURE) prior to exiting
with a failure status.

8.3.3 rdc_GenLabel

rdc_GenLabel simply generates a tape label associated with the specified raw wideband data file.
This process is a simple encapsulation of, essentially, two functions: rdc_db_LoadLabelParms
and rdc_PrintLabel. rdc_GenLabel was set up as a standalone process that could be
forked/executed by other processes and executed directly from the command line.

Input

The only input to rdc_GenLabel is the process (command line) arguments. The format of the
process arguments have been slightly modified since LPS Build 1, but are essentially unchanged.

• -f filename – This option specifies the complete path and filename of the raw wideband
data file to be associated with the tape label. It is used as the database key into the
RDC_ACCT table to extract the necessary tape label parameters.

Output

On successful completion of rdc_GenLabel, a tape label associated with the provided raw
wideband data file is sent to the printer device defined by the LPS_PRINTER_DEVICE
environment variable.

Notes

rdc_GenLabel currently does not call rdc_Init to perform initialization. If rdc_Init were used, this
process would be more consistent with the other RDCS processes, and unnecessary source code
could be removed, e.g., the call to lps_ProcessInit, the call to rdc_GetArgs, and extraction of the
current environment variables.

rdc_GenLabel should add a call to rdc_LogShutdownMessage(LPS_SUCCESS) prior to exiting
with a successful status. In addition, this process should replace the calls to
LPS_LOGMESSAGE and rdc_ShutDown with a call to
rdc_LogShutdownMessage(LPS_FAILURE) prior to exiting with a failure status.

rdc_GenLabel should add a call to rdc_Init to extract environment variables to be used during
processing. As a result, rdc_PrintLabel should be modified to accept a printer device as an
argument instead of performing the environment variable extraction itself.

8.3.4 rdc_Restage

rdc_Restage was designed in conjunction with rdc_Save. Both processes perform the same
general function, just reversed. Because rdc_Save was coded first, many of the units that were
coded for the rdc_Save function were converted to RDCS global units before implementing

DRAFT

LPS PRM 8–10

rdc_Restage. Several inconsistencies still exist that need to be addressed for the sake of
consistency and source code reuse. The following recommended design modifications should be
made for rdc_Restage:

1. rdc_Restage does not take advantage of the functionality provided by rdc_Init.
rdc_GetArgs is a self-contained function inside the rdc_Restage.c unit. This function
could be eliminated entirely because rdc_Init performs this function.

2. rdc_Save makes use of a #define named RDC_RESTAGE_BIN. rdc_Restage defines a
separate #define named RDC_RESTAGE_DEFAULT_BIN. RDC_RESTAGE_BIN
should be used in place of RDC_RESTAGE_DEFAULT_BIN, and a call to
rdc_TapeBinCount should be used in rdc_Restage to eliminate assumptions about the
tape device being used.

3. rdc_Restage should add, for consistency, a -b bin option allowing the restage DLT BIN
number to be overridden.

4. rdc_Restage performs an explicit call to chdir(2) to change directories. rdc_Save uses
the tar(1) -C option to perform this function. rdc_Restage should be examined for
removal of the chdir(2) call in favor of the tar(1) -C option.

5. rdc_Restage currently calls rdc_ShutDown to terminate the process in the event of a
failure. This call should be removed and replaced with a call to
lps_LogShutdownMessage(LPS_FAILURE). In addition, on successful termination, the
direct call to LPS_LOGMESSAGE to report that the processing is completing should be
replaced with a call to lps_LogShutdownMessage(LPS_SUCCESS).

Input

The only input to rdc_Restage is the process (command line) arguments. The format of the
process arguments have been slightly modified since LPS Build 1, but are essentially unchanged.

• -b bin – This option does not currently exist in the rdc_Restage function, but does exist
in the rdc_Save function. This option should be added to the rdc_Restage process to
allow the DLT BIN number to be used for restaging to be specified on the command
line. Currently, DLT BIN number 6 is required.

• -d device – This option is optional, but allows the tape device to be specified on the
command line. If this option is not provided, the LPS_TAPE_DEV environment
variable is used to obtain this information.

Output

Once restaging is successful, this process should have extracted the tape contents (both the raw
wideband data file and the raw wideband data accounting file) and updated the database with the
information defined in the raw wideband accounting file. In addition, the RDC_ACCT table
should reflect the online state of the raw wideband data. If a record exists in the database
reflecting this raw wideband data, the record is simply updated to reflect the online state. If a
record does not exist reflecting this raw wideband data, a new one is created.

DRAFT

LPS PRM 8–11

Notes

The LPS_TAPE_DEV and LPS_TAPE_LIBRARY_DEV environment labels are both required
for rdc_Restage. Both variables are related to the DLT device, but identify different controllers.
LPS_TAPE_DEV defines the tape device, and LPS_TAPE_LIBRARY_DEV defines the robotic
arm that loads and unloads a tape from the DLT slots. LPS_TAPE_LIBRARY_DEV is a small
computer system interface (SCSI) controller.

At the time of the Release 2 turnover to Integration and Test, the default values of
LPS_TAPE_DEV and LPS_TAPE_LIBRARY_DEV were not known, therefore “unknown” was
used as the default. If the default devices are known, the default values should be modified to
reflect the change. Due to the currently specified defaults, if these environment variables are not
set, the rdc_Restage process fails.

8.3.5 rdc_Save

rdc_Save was designed in conjunction with rdc_Restage. Both processes perform the same
general function, just reversed. Because rdc_Save was coded first, many of the units that were
coded for the rdc_Save function were converted to RDCS global units before implementing
rdc_Restage. Several inconsistencies still exist that need to be addressed for the sake of
consistency and source code reuse. The following recommended design modifications should be
made for rdc_Save:

1. rdc_Save should add, for consistency, a -d device allowing command line specification
of the device to use for archiving.

2. rdc_Restage created an RDCS global unit named rdc_TermSig to handle signal
catching. rdc_Save generated a unit named rdc_SaveSignalHandler that performs nearly
the same function. rdc_TermSig should be enhanced to be used by both rdc_Restage
and rdc_Save, and the rdc_SaveSignalHandler should be removed.

3. rdc_Restage redirects the tar(1) output to a temporary file for logging purposes.
rdc_Save performs the tar(1) command in QUITE mode. rdc_Save should be examined
to make use of the output redirection. This may provide the end user with beneficial
tar(1) feedback.

It should be noted that RDCS global rdc_SystemMonitor was generated during the
implementation of rdc_Save. It was decided that the tarring of the tape would be a long process,
and the user would need some feedback to ensure that the save to tape was proceeding as
expected. With this in mind, rdc_SystemMonitor was designed to provide a means to perform
this task, and so that it could be used for other processes. Because of the generic design of this
unit, rdc_Restage also makes use of this function.

Input

The only input to the rdc_Save process is the process (command line) arguments. The format of
the process arguments have been slightly modified since LPS Build 1, but are essentially
unchanged.

• -b bin – This option is optional, but allows the default DLT BIN number for archival to
be overridden. If this option is not provided, rdc_Save attempts to locate the

DRAFT

LPS PRM 8–12

$LPS_TEMPFILE_PATH/lpsTapeLibraryBinFile file to obtain the BIN to be used for
archiving. If this file does not exist, BIN 0 is assumed.

• -d device – This option currently does not exist in rdc_Save, but does exist in
rdc_Restage. This option should be added to the rdc_Save process to allow the tape
device to be specified on the command line. Currently, the LPS_TAPE_DEV
environment variable is used to obtain this information.

• filename – Specifies the complete path and filename to be archived. The only
validations performed on this filename are that the raw wideband data file must end in a
.data extension, and the file must have an associated accounting file (.acct extension)
residing in the same directory.

Output

On successful archival, this process should have saved the raw wideband data file and the raw
wideband data accounting file to tape, deleted the raw wideband data files (if L0R processed),
updated the archival and online state of the raw wideband data, and generated a tape label.

Notes

When the rdc_Save process has successfully completed, lpsTapeLibraryBinFile will be updated
to reflect the DLT BIN number to be used for the next scheduled tape archive. This is, basically,
the last function that rdc_Save performs before terminating. Therefore, lpsTapeLibraryBinFile
reflects the current DLT BIN to be used for archiving on startup of the process.

The rdc_Save process will exit immediately if the BIN number read from lpsTapeLibraryBinFile
(next scheduled) exceeds the number of available archiving slots (return value of
rdc_TapeBinCount - 1). It was assumed that the LPS operator would have to reload the new set
of tapes if this situation occurs, so this process reports an informational message to the LPS
Journal and quits.

Pay careful attention to the ordering of processing when modifying this unit. rdc_GenLabel
accesses lpsTapeLibraryBinFile to generate a correct tape label. If this file is updated
(rdc_SetBinNumber) before rdc_GenLabel is spawned, the tape label will be incorrect.

The LPS_TAPE_DEV and LPS_TAPE_LIBRARY_DEV environment labels are both required
for the rdc_Save process. Both variables are related to the DLT device, but identify different
controllers. LPS_TAPE_DEV defines the tape device, and LPS_TAPE_LIBRARY_DEV defines
the robotic arm that loads and unloads a tape from the DLT slots. LPS_TAPE_LIBRARY_DEV
is an SCSI controller.

At the time of the Release 2 turnover to Integration and Test, the default values of
LPS_TAPE_DEV and LPS_TAPE_LIBRARY_DEV were not known, so unknown was used as
the default. If the default devices are known, the default values should be modified to reflect the
change. Due to the currently specified defaults, if these environment variables are not set, the
rdc_Save process fails.

DRAFT

LPS PRM 8–13

8.3.6 rdc_Terminate

rdc_Terminate was established as an abort function to be called whenever an RDCS process
needs to be aborted. This process provided a single interface definition with other subsystems
(e.g., MACS) for process aborting. This allowed the method for terminating processes within the
RDCS to be an internal issue so that changes to methods for terminating RDCS processes could
be handled in a single place.

It is recommended that all RDCS processes be aborted using the rdc_Terminate process.

Input

The rdc_Terminate process was designed after LPS Build 1 and provided for removal of about
three different executables that were designed to accomplish the same task in different manners.

• processName – This argument specifies the process name to be terminated. This is
performed using the killall(1M) function provided by UNIX. killall(1M) was chosen
because it provides simple implementation of this function, and all RDCS processes are
currently terminated using the same mechanism. The use of signal handlers were
implemented in all time-consuming RDCS processes requiring possible early
termination.

Output

There is no output of the rdc_Terminate process other than error message logging indicating that
the process did not exist.

Notes

Some RDCS processes currently do not initialize signal handlers to handle aborting. These are,
generally, the processes that are not time consuming. They either perform their specified task or
they do not. These processes have been flagged in this section as candidates for some redesign,
e.g., incorporating rdc_Init. If the design is changed, the processes would be able to properly
clean up on receipt of the termination signal.

Because this process uses killall(1M) to abort, all processes with the same name will be
terminated by definition of killall(1M). For example, if two rdc_Save processes are running, both
will receive the termination signal and quit. It was decided that this is a safe design because of all
the RDCS processes, only rdc_DeleteFiles can have multiple running processes.

8.3.7 rdc_Transmit

rdc_Transmit is software that falls under the umbrella requirement for testing. The importance of
transmitting data at 75 Mbps was the sole driver for implementing this software, therefore, many
of the features that rdc_Capture provides are not provided in rdc_Transmit.

For the most part, the design of rdc_Transmit mirrors that of rdc_Capture, with the following
caveats:

• No LPS database access

• No statistical output other than the transmission rate written to the log

DRAFT

LPS PRM 8–14

• The input file is transmitted in its entirety unless the rdc_Transmit software is
preempted by a signal. In other words, there is no duration argument such as in
rdc_Capture.

See Mizar versus HPDI in Section 8.3.1 for additional details.

Input

When initially designed, the command line arguments were identical to that of rdc_Capture.
Once in implementation, it was determined that some of the arguments were unnecessary.

• -i – See rdc_Capture

• -s – See rdc_Capture

• -l – Not needed, so it was removed

• -b Start_Date-&-Time – Not needed, so it was removed

• -e Stop_Date-&-Time – Not needed, so it was removed.

• filename – Specifies the complete path and filename to be transmitted. Due to
limitations of the HPDI device, two 10-megabyte buffers must be filled for the transmit
to work. Because of this limitation, files may only be transmitted if they are greater than
or equal to 20 megabytes.

Output

The only output of the rdc_Transmit function is the serial data stream. It should be noted that a
file that is not a multiple of 10 megabytes will be padded with zeros to allow the last section of
data to transfer.

8.3.8 rdc_UpdRDCAcct

rdc_UpdRDCAcct was incorporated into the RDCS design to provide a means of performing
some database integrity checks in the database. It was decided that the LPS database could be
down for some unknown period of time while rdc_Capture continued to place raw wideband data
files onto the system. In addition, during this downtime, raw wideband data files could have been
moved off the system to make room for later contacts. This process identifies the raw wideband
data files on the system and updates the RDC_ACCT table accordingly.

Input

rdc_UpdRDCAcct has no input.

Output

Following successful completion of rdc_UpdRDCAcct, the RDC_ACCT records existing in the
table will be updated to reflect the online state of the associated raw wideband data file. Records
that do not exist for online raw wideband data files will be inserted with information obtained
from their associated raw wideband data accounting files.

DRAFT

LPS PRM 8–15

Notes

rdc_UpdRDCAcct currently does not call rdc_Init to perform initialization. If rdc_Init were used,
this process would be more consistent with the other RDCS processes, and unnecessary source
code could be removed, e.g., the call to lps_db_Connect and the extraction of environment
variables.

8.3.9 rdc_vmereset

rdc_vmereset is source obtained from SGI, but is not supported by SGI. This source code is
required for the HPDI device to initialize correctly, so if it is not used, undetermined results
could occur when capturing or transmitting data. It was decided that the source code, versus the
executable, had to be delivered if operating system upgrades had to be performed on the LPS
strings or porting to different platforms was required.

This process should not have to be called by the LPS operator or through any other user.
rdc_Capture and rdc_Transmit fork/execute this process when the VME Bus needs to be reset.

Little is known about this source other than that it resets a VME bus.

Input

• -a VMEbus-adap-num – This option is required. It specifies the VME Bus adapter that
is connected to the HPDI device. For LPS, it should always be 61.

• -d reset-duration-microseconds – This option is optional. It specifies the duration in
microseconds that the process will hold down the reset line on the adapter. The default
is used by LPS, and the value is 80.

Output

There is no output, other than informational messages to stdout/stderr, produced by this process.

Notes

Do not modify this source code unless absolutely sure about the pending results. If this process
does not succeed in resetting the VME Bus, undetermined results could occur when capturing or
transmitting data.

8.4 Raw Data Processing Subsystem
The RDPS consists of frame synchronization, CCSDS Grade 3 Services, BCH decoding, CADU
annotation, generate trouble file, and provide return-link statistics of input data.

• Frame synchronization used SCLF strategy to synchronize CCSDS frame
synchronization.

• CCSDS Grade 3 Services performs error detection and correction such as CRC, RS
decoding. It also identifies fill CADU and virtual channel identifier (VCID) changes
and annotates CADU.

– CRC will detect the existence of error bits in the VCDU header, mission, and
pointer data fields.

DRAFT

LPS PRM 8–16

– RS will protect the VCDU header and correct up to two symbols error in each RS
code block.

• BCH decoding detects the errors in both mission data and data pointer fields in the
CADU, capable to correct up to three error bits in each mission data or data pointer
code word.

• Each CADU is annotated after each decoding stage. The filled CADU is identified and
annotated. If the VCID is changed, it is annotated as well.

• Uncorrectable CADU will be stored in the trouble file for reference.

• The statistics of all CADUs received in the return link will be in the RDP_ACCT
database table and complete the RDPS processing.

8.5 Major Frame Processing Subsystem
8.5.1 Data Communication

The MFPS design used following two methods to communicate data between functions:

1. Global variables – If a data item was used by more than two functions that are not in the
same chain of function calls, it was made a global variable to facilitate communication.
Also, a data item was made a global variable if it needed to be communicated across a
deep (five or more) set of nested function calls to conserve stack space.

2. Function arguments – The data items that were not made global variables were passed
on to other functions as arguments. The data items to be modified by the called function
were passed as pointers. Also, large data items were passed as pointers to conserve
stack space.

8.5.2 Memory Allocation

To eliminate any uncertainty about availability of memory during processing, the MFPS design
does not allow dynamic allocation of memory. All memory required for MFPS processing is
static and is allocated at startup.

8.6 PCD Processing Subsystem
8.6.1 Scene Identification Algorithm

The pcd program loses synchronization with the stream of unpacked PCD cycles whenever there
is a gap in the VCDU sequence. This occurs even when the number of missing VCDUs is known
by inference from the value of the VCDU counter. Because the number of fill words in an
unpacked PCD cycle is variable, it is impossible to determine the position within the first new
unpacked cycle represented by the first unpacked word after the gap. Therefore, the pcd program
discards data words after a gap until unpacked cycle synchronization is established.

The pcd program loses synchronization with the stream of PCD minor frames whenever there is
a gap for the same reason. All data after the gap and prior to the next minor frame
synchronization code is discarded.

DRAFT

LPS PRM 8–17

8.6.2 Majority Vote Failure Reporting

The pcd program counts missing data words in an unpacked PCD cycle as a majority vote
failure. Data words can be missing from an unpacked PCD cycle whenever a gap in the VCDU
sequence truncates the cycle. The count of majority vote failures at any level of aggregation is
therefore the sum of both the number of unpacked cycles in which three data words were present
but unequal and the number of unpacked cycles in which fewer than three data words were
present.

8.7 Image Data Processing Subsystem
8.7.1 Band

The idp_band process is a critical function for the IDPS. If it fails, all IDPS processing will
terminate. This process runs concurrently with the idp_mwd processes. It will complete ahead of
the idp_browse and idp_acca processes. The main logic for band file generation is contained in
the idp_BandFillFile function. Calls to the HDF-EOS API are contained in the idp_HDF module.

8.7.2 Moving Window Display

The moving window display (MWD) is an X11/Motif application that can compete with the
ORACLE Forms based LPS GUI for system resources such as the X Window color palette. The
result can be a black screen in the MWD. The conflict can be avoided by editing the Tk2Motif
file in the user’s $HOME directory and setting the “Tk2Motif*UsePrivateColormap: True” field.
This causes the ORACLE Forms system to use a private color map that does not usurp the entire
system color map at the expense of the MWD. If the file does not exist in the user’s home
directory, copy it from $ORACLE_HOME/guicommon/tk2/admin/Tk2Motif.gray.

At startup, the idp_mwd process forks a copy of itself, creating a child process. The parent
process reads major frame data from the idp_band process from a named pipe and forwards the
data to its child process through an internal pipe. The child MWD process interfaces with the
X Window system. The MWD is split into two separate UNIX processes so that the reading of
scan data and the handling of X Window events do not have to wait for each other, which could
cause the system to stall.

The MWD makes use of an X11/Motif resource file, Idp_mwd (note the uppercase “I”), which
should be placed in the user’s $HOME directory. This file controls the appearance of the MWD
form. Refer to a Motif manual for a description of resource files.

8.7.3 Browse

The idp_browse process is started when the IDPS is started; however, it remains dormant until
the first subinterval is completed and the first set of band files have been produced. It reads the
band files as input.

The IDPS currently relies entirely on waveletting to reduce the size of browse images. However,
if a requirement is added to perform subsampling, the interface to implement this is already
provided in the idp_HDFBandAccess.GetScene function. Setting the Subsampling Factor
parameter in the argument list to a number “n” greater than 1 will cause the GetScene function to
read every nth pixel of every nth line in the bandfile’s swath.

DRAFT

LPS PRM 8–18

8.7.4 Automatic Cloud Cover Assessment

The idp_acca process is started when the IDPS is started; however, it remains dormant until the
first subinterval is completed and the first set of band files have been produced. It reads the band
files as input.

The version of the automatic cloud cover assessment (ACCA) algorithm implemented in the
current version of LPS can be ascertained with the UNIX “what” command. Type “what
$IDPS_BIN/idp_acca |sort -u” at the shell command line. The result will be a list of function
names and the version numbers used to build the idp_acca executable. Among the function
names is a string “ACCA Algorithm ID Ver. = <version>.” This corresponds to the algorithm
version identifier stored in the LPS metadata.

8.7.5 Named Pipe

The idp_band and idp_mwd processes communicate with each other through an IRIX named
pipe (/tmp/idp_band_mwd.pipe). idp_band sends major frame data to idp_mwd by this means
because the size of the major frame records exceeds the maximum size message that can be
placed on a message queue. The idp (main) process creates the pipe in the /tmp directory when
IDPS initializes and removes it when IDPS processing completes.

8.7.6 Additional Debug Output

If the $IDPS_DEBUG environment variable is defined in the shell (it does not matter what it is
set to), the IDPS will dump the contents of the HDF error stack to text files. The HDF error stack
contains error messages generated by HDF library functions while attempting to read or write
HDF files. If error messages occur in the LPS Journal relating to the generation of band or
browse files and additional information is needed to diagnose the problem, the HDF error stack
might be useful. The idp_band process writes HDF errors to the /tmp/idp_band.hdf.errs file and
the idp_browse process to the /tmp/idp_browse.hdf.errs file.

The IDPS will write additional status messages to the LPS Journal if the DEBUG symbol is
defined during compilation. It does not need to be set to anything. Adding -DDEBUG to the
compiler options in a Makefile will turn on this extended status message logging. These status
messages are intended for debugging only and are excessive during normal LPS processing.

8.8 LPS Data Transfer Subsystem
8.8.1 senddan

The LDTS has the capability to open multiple sessions to connect to the ECS server, and each
session can contain multiple DANs. However, the senddan program is designed to create one
DAN only and send it over to ECS in an open session. This is based on a small number of
contact periods captured in 1 day for LPS and makes the design of the senddan program simpler
and easier to maintain. In case it is necessary to send multiple DANs to ECS at the same time,
the senddan program can be invoked multiple times simultaneously by the MACS and has no
impact on the senddan program.

When a failed DAN is resent to ECS, a new DAN with a new DAN sequence number is
generated. The failed DAN will be marked as “canceled DAN” for good. For resending the
suspended DANs, the same DANs will be sent over to ECS.

DRAFT

LPS PRM 8–19

If an error encountered in the TCP/IP socket or the crucial information cannot be retrieved from
the database, the senddan program will be aborted. When this happens, it requires the LPS
operator to troubleshoot the problem.

8.8.2 rcvddn

To keep the design simple, rcvddn will only receive one DDN message for an open connection
between LPS and ECS. If multiple DDN messages are sent from ECS simultaneously, the
incoming DDN messages will be queued by the TCP/IP socket and the rcvddn program will
process them seriously based on the order of their presence in the socket.

If an error encountered in the TCP/IP socket or the crucial information cannot be retrieved from
the database, the rcvddn program will be aborted. When this happens, it requires the LPS
operator to troubleshoot the problem. However, if the error will only affect the database
consistency and does not prevent the rcvddn program from continuing, the program will keep
running and an alert message will be logged to the LPS Journal.

Because rcvddn is a server process and continues checking the socket for any incoming message,
a health message is printed on the console periodically to inform the LPS operator of the
existence of the server.

If the data exchange sequence is compromised due to system error, the same DDN may be
received twice. In this case, rcvddn will only process the DDN once. However, to guarantee ECS
receives the data delivery acknowledgment (DDA) message, rcvddn will send the DDA
messages twice.

8.8.3 stopddn

The stopddn program is designed to be used by the MACS to terminate the rcvddn server process
via user interface. To prevent the operator from terminating the rcvddn server prematurely while
rcvddn is still processing a DDN message, the stopddn program first checks the rcvddn
processing status. If a DDN message is currently being processed, stopddn will wait until the
rcvddn server completes the processing and then terminate the rcvddn server process.

8.8.4 deletefile

If a contact period’s L0R files are marked for retention, the files cannot be deleted automatically
or manually. To delete the L0R files manually, the retention mark must be cleared. Once the L0R
files are deleted, all successful database transactions will be committed even if one or more
database transaction error(s) is encountered.

8.8.5 LDTS Database Tables

To keep the file transfer status for the contact period L0R files, an LDT_File_Set_Info record
and corresponding LDT_DAN_Info record are created. They are associated with each other by
the contact sequence ID and the file version number. The LDT_File_Set_Info record is created
by the MACS when LPS L0R processing begins and is maintained by the LDTS. When a failed
DAN is resent, the recreated new DAN and the failed DAN point to the same
LDT_File_Set_Info record to maintain LDTS database integrity.

DRAFT

LPS PRM 8–20

For LDT_File_Set_Info record, one or more subinterval LDT_File_Group_Info record(s) is
created and is associated with each other by the subinterval sequence ID. Likewise, one or more
LPS_File_Info record(s) is created for a LDT_File_Group_Info record and is associated with the
LDT_File_Group_Info record by the subinterval sequence ID.

DRAFT

LPS PRM 9–1

Section 9. Other Gotchas

9.1 LPS Message Logging Mechanism
LPS uses the UNIX syslogd daemon to log the error and status messages into the LPS Journal
file that is configured in /etc/syslog.conf. Currently, LPS is configured to select “local0” facility
at all severity level messages except the kernel messages. The pathname for the destination
action file, LPS_Journal, should be configured to match $LPS_JOURNAL_PATH. The
following severity levels are defined and used by LPS:

• LPS_MSG_EMERG – system is unusable, Emergency Message

• LPS_MSG_ALERT – action must be taken immediately, Alert Message

• LPS_MSG_CRIT – critical conditions, Critical Message

• LPS_MSG_ERR – error conditions, Error Message

• LPS_MSG_WARNING – warning conditions, Warning Message

• LPS_MSG_NOTICE – normal but significant condition, Notification Message

• LPS_MSG_INFO – informational, Informational Message

• LPS_MSG_DEBUG – debug-level messages, Debug Message

When a message is ready to go into the LPS Journal, the subsystem calls lps_LogMessage.c with
the message severity level, source filename, source line number where the message is generated,
and message string. The message is reformatted according to the following format:

date + priority_level + hostname + “:” + GID + “[“ + source_unit_name + “:” +
source_line_number + ”]” + message_string

The reformatted message is then logged into the LPS_Journal by syslogd.

If the messages need to be printed on the console for debugging purpose, set the
$LPS_LOG_STDOUT environment variable.

9.2 Raw Data Capture Subsystem
The RDCS is currently inconsistent with the rest of LPS with respect to the executable names. It
uses mixed case executable names, whereas the rest of LPS uses all lowercase names for the
executables.

The rdc_vmereset function was source code obtained by SGI. This source code is NOT
supported by SGI, but is required on the LPS for initializing the HPDI device. Failure to use this
executable could produce undeterministic results when using the HPDI device and is not
recommended. This source should be carefully considered before upgrading the operating system
or porting the software to another platform.

All RDCS processes make use of the same environment variable (RDC_STATUS_INTERVAL)
to determine the reporting period for informational message logging. This implementation may

DRAFT

LPS PRM 9–2

cause difficulty if the tape functions need a different default reporting period than the capture
and transmit functions. It may be beneficial to define unique environment variables for each
process, or each function type, to eliminate potential aggravation for the LPS operator.

There are no additional “gotchas” for the RDCS not previously discussed in the previous
sections.

9.3 PCD Processing Subsystem
9.3.1 Subinterval Change Lag in Scene Identification

For a given iteration of PCD’s outermost loop, all functions normally process data from the same
subinterval, even when they are not processing the same data. However, when a subinterval
changes, the scene identification functions (pcd_MainDetermineScenes and its subordinates) will
process saved data from the previous subinterval in the current iteration and save the data from
the new subinterval for processing in the next iteration.

The pcd program design involves a significant amount of global-scope processing state
information. Some important state information are the current subinterval and the subinterval
change flag, pcd_subIntvChangedFlag. Unfortunately, there are a variety of ways in which the
current subinterval is accessed from the global state information available. The most popular
method is through the variable pcd_subIntvList. It lists a summary for each subinterval
encountered and includes a count field that can be used as an index. The pcd_subintv_index
global variable contains the same information.

It is vital to remember that for pcd_MainDetermineScenes and its subordinates, global
subinterval state information does not apply when the subinterval changes. In particular, using
pcd_subintv_index or pcd_subIntvList.PCD_Sub_Intv_Count to access information about the
subinterval to which the data being processed belongs will fail. The data being processed
actually belongs to the previous subinterval. Also, pcd_subIntvChangedFlag will be true when
the saved data from the last subinterval is being processed and not for the first data from the new
subinterval.

For pcd_MainDetermineScenes and its subordinates, pcd_cycleFromNewSubIntv should be used
to determine whether or not the data being processed is from a new subinterval.

DRAFT

LPS PRM AC–1

Acronyms

ACCA automatic cloud cover assessment

API application programmatic interface

ASCII American Standard Code for Information Interchange

BCH Bose-Chaudhuri-Hocquenghem

BSD Berkeley Software Distribution

CADU channel access data unit

COTS commercial off-the-shelf

CCSDS Consultative Committee for Space Data Systems

CRC cyclic redundancy check

DAN data availability notice

DBAR database access routine

DBMS database management system

DDA data delivery acknowledgment

DDF Data Distribution Facility

DDN data delivery notice

DLT digital linear tape

ECS EOS Core System

EDC EROS Data Center

EOS Earth Observation System

EROS Earth Resources Observation System

ETM+ Enhanced Thematic Mapper Plus

FIFO first-in-first-out

FILO first-in-last-out

FSP frame synchronization process

GHA Greenwich hour angle

GOTS Government off-the-shelf

GSFC Goddard Space Flight Center

GUI graphical user interface

DRAFT

LPS PRM AC–2

HDF hierarchical data format

HPDI high-speed peripherel device interface

IAS Image Assessment System

ICD interface control document

IDD interface definition document

IDPS image data processing subsystem

I/O input/output

IP Internet Protocol

IPC interprocess communication

JPL Jet Propulsion Laboratory

LDTS LPS data transfer subsystem

LGS Landsat Ground Station

LPS Landsat 7 Processing System

MACS management and control subsystem

MFPS major frame processing subsystem

MOC Mission Operations Center

MO&DSD Mission Operations and Data Systems Directorate

MSCD mirror scan correction data

MWD moving window display

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputing Applications

PCD payload correction data

PCDS PCD processing subsystem

PID process identifier

PVL Parameter Value Language

Q&A quality and accounting

RDCS raw data capture subsystem

RDPS raw data processing subsystem

RS Reed-Solomon

DRAFT

LPS PRM AC–3

RSL Reusable Software Library

SCLF search, check, lock, and flywheel

SCSI small computer system interface

SGI Silicon Graphics, Inc.

SQL Structured Query Language

TCP Transmission Control Protocol

VCDU virtual channel data unit

VCID virtual channel identifier

VME Versa-Module European

